1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
------------------------------------------------------------------------------ --- This library defines a representation of a search space as --- a tree and various search strategies on this tree. --- This module implements **strong encapsulation** as discussed in --- [the JFLP'04 paper](http://www.informatik.uni-kiel.de/~mh/papers/JFLP04_findall.html). --- --- @author Michael Hanus, Bjoern Peemoeller, Fabian Reck --- @version December 2018 ------------------------------------------------------------------------------ {-# LANGUAGE CPP #-} module Control.Search.SearchTree ( SearchTree (..), someSearchTree, getSearchTree , isDefined, showSearchTree, searchTreeSize, limitSearchTree , Strategy , dfsStrategy, bfsStrategy, idsStrategy, idsStrategyWith, diagStrategy , allValuesWith , allValuesDFS, allValuesBFS, allValuesIDS, allValuesIDSwith, allValuesDiag , ValueSequence, vsToList , getAllValuesWith, printAllValuesWith, printValuesWith , someValue, someValueWith ) where import System.IO ( hFlush, stdout ) import Data.List ( diagonal ) import Control.Search.Unsafe ( allValues ) --- A search tree is a value, a failure, or a choice between two search trees. data SearchTree a = Value a | Fail Int | Or (SearchTree a) (SearchTree a) --- A search strategy maps a search tree into some sequence of values. --- Using the abtract type of sequence of values (rather than list of values) --- enables the use of search strategies for encapsulated search --- with search trees (strong encapsulation) as well as --- with set functions (weak encapsulation). type Strategy a = SearchTree a -> ValueSequence a --- Returns the search tree for some expression. getSearchTree :: a -> IO (SearchTree a) getSearchTree x = return (someSearchTree x) --- Internal operation to return the search tree for some expression. --- Note that this operation is not purely declarative since --- the ordering in the resulting search tree depends on the --- ordering of the program rules. --- --- Note that in PAKCS the search tree is just a degenerated tree --- representing all values of the argument expression --- and it is computed at once (i.e., not lazily!). someSearchTree :: a -> SearchTree a someSearchTree = list2st . allValues where list2st [] = Fail 0 list2st [x] = Value x list2st (x:y:ys) = Or (Value x) (list2st (y:ys)) --- Returns True iff the argument is defined, i.e., has a value. isDefined :: a -> Bool isDefined x = hasValue (someSearchTree x) where hasValue y = case y of Value _ -> True Fail _ -> False Or t1 t2 -> hasValue t1 || hasValue t2 --- Shows the search tree as an intended line structure showSearchTree :: Show a => SearchTree a -> String showSearchTree st = showsST [] st "" where -- `showsST ctxt <SearchTree>`, where `ctxt` is a stack of boolean flags -- indicating whether we show the last alternative of the respective -- level to enable drawing aesthetical corners showsST ctxt (Value a) = indent ctxt . shows a . nl showsST ctxt (Fail _) = indent ctxt . showChar '!' . nl showsST ctxt (Or t1 t2) = indent ctxt . showChar '?' . nl . showsST (False : ctxt) t1 . showsST (True : ctxt) t2 indent [] = id indent (i:is) = showString (concatMap showIndent $ reverse is) . showChar (if i then llc else lmc) . showString (hbar : " ") where showIndent isLast = (if isLast then ' ' else vbar) : " " vbar = '\9474' -- vertical bar hbar = '\9472' -- horizontal bar llc = '\9492' -- left lower corner lmc = '\9500' -- left middle corner nl = showChar '\n' shows x = showString (show x) showChar c = (c:) showString s = (s++) -- showSearchTree st = showST 0 st "" -- where -- showST _ (Value a) = showString "Value: " . shows a . nl -- showST _ Fail = showString "Fail" . nl -- showST i (Or t1 t2) = showString "Or " -- . showST i' t1 . tab i' . showST i' t2 -- where i' = i + 1 -- tab j = showString $ replicate (3 * j) ' ' --- Returns the size (number of Value/Fail/Or nodes) of the search tree. searchTreeSize :: SearchTree _ -> (Int, Int, Int) searchTreeSize (Value _) = (1, 0, 0) searchTreeSize (Fail _) = (0, 1, 0) searchTreeSize (Or t1 t2) = let (v1, f1, o1) = searchTreeSize t1 (v2, f2, o2) = searchTreeSize t2 in (v1 + v2, f1 + f2, o1 + o2 + 1) --- Limit the depth of a search tree. Branches which a depth larger --- than the first argument are replace by `Fail (-1)`. limitSearchTree :: Int -> SearchTree a -> SearchTree a limitSearchTree _ v@(Value _) = v limitSearchTree _ f@(Fail _) = f limitSearchTree n (Or t1 t2) = if n<0 then Fail (-1) else Or (limitSearchTree (n-1) t1) (limitSearchTree (n-1) t2) ------------------------------------------------------------------------------ -- Definition of various search strategies: ------------------------------------------------------------------------------ --- Depth-first search strategy. dfsStrategy :: Strategy a dfsStrategy (Fail d) = failVS d dfsStrategy (Value x) = addVS x emptyVS dfsStrategy (Or x y) = dfsStrategy x |++| dfsStrategy y ------------------------------------------------------------------------------ --- Breadth-first search strategy. bfsStrategy :: Strategy a bfsStrategy t = allBFS [t] allBFS :: [SearchTree a] -> ValueSequence a allBFS [] = emptyVS allBFS (t:ts) = values (t:ts) |++| allBFS (children (t:ts)) children :: [SearchTree a] -> [SearchTree a] children [] = [] children (Fail _ : ts) = children ts children (Value _ : ts) = children ts children (Or x y : ts) = x:y:children ts -- Transforms a list of search trees into a value sequence where -- choices are ignored. values :: [SearchTree a] -> ValueSequence a values [] = emptyVS values (Fail d : ts) = failVS d |++| values ts values (Value x : ts) = addVS x (values ts) values (Or _ _ : ts) = values ts ------------------------------------------------------------------------------ --- Iterative-deepening search strategy. idsStrategy :: Strategy a idsStrategy t = idsStrategyWith defIDSDepth defIDSInc t --- The default initial search depth for IDS defIDSDepth :: Int defIDSDepth = 100 --- The default increasing function for IDS defIDSInc :: Int -> Int defIDSInc = (2*) --- Parameterized iterative-deepening search strategy. --- The first argument is the initial depth bound and --- the second argument is a function to increase the depth in each --- iteration. idsStrategyWith :: Int -> (Int -> Int) -> Strategy a idsStrategyWith initdepth incrdepth st = iterIDS initdepth (collectInBounds 0 initdepth st) where iterIDS _ Nil = emptyVS iterIDS n (Cons x xs) = addVS x (iterIDS n xs) iterIDS n (FCons fd xs) = failVS fd |++| iterIDS n xs iterIDS n Abort = let newdepth = incrdepth n in iterIDS newdepth (collectInBounds n newdepth st) -- Collect solutions within some level bounds in a tree. collectInBounds :: Int -> Int -> SearchTree a -> AbortList a collectInBounds oldbound newbound st = collectLevel newbound st where collectLevel d (Fail fd) = if d <newbound-oldbound then FCons fd Nil else Nil collectLevel d (Value x) = if d<newbound-oldbound then Cons x Nil else Nil collectLevel d (Or x y) = if d>0 then concA (collectLevel (d-1) x) (collectLevel (d-1) y) else Abort -- List containing "aborts" are used to implement the iterative -- depeening strategy: data AbortList a = Nil | Cons a (AbortList a) | FCons Int (AbortList a) | Abort -- Concatenation on abort lists where aborts are moved to the right. concA :: AbortList a -> AbortList a -> AbortList a concA Abort Abort = Abort concA Abort Nil = Abort concA Abort (Cons x xs) = Cons x (concA Abort xs) concA Abort (FCons d xs) = FCons d (concA Abort xs) concA Nil ys = ys concA (Cons x xs) ys = Cons x (concA xs ys) concA (FCons d xs) ys = FCons d (concA xs ys) ------------------------------------------------------------------------------ -- Diagonalization search according to -- J. Christiansen, S Fischer: EasyCheck - Test Data for Free (FLOPS 2008) --- Diagonalization search strategy. diagStrategy :: Strategy a diagStrategy st = values (diagonal (levels [st])) -- Enumerate all nodes of a forest of search trees in a level manner. levels :: [SearchTree a] -> [[SearchTree a]] levels st | null st = [] | otherwise = st : levels [ u | Or x y <- st, u <- [x,y] ] ------------------------------------------------------------------------------ -- Operations to map search trees into list of values. ------------------------------------------------------------------------------ --- Return all values in a search tree via some given search strategy. allValuesWith :: Strategy a -> SearchTree a -> [a] allValuesWith strategy searchtree = vsToList (strategy searchtree) --- Return all values in a search tree via depth-first search. allValuesDFS :: SearchTree a -> [a] allValuesDFS = allValuesWith dfsStrategy --- Return all values in a search tree via breadth-first search. allValuesBFS :: SearchTree a -> [a] allValuesBFS = allValuesWith bfsStrategy --- Return all values in a search tree via iterative-deepening search. allValuesIDS :: SearchTree a -> [a] allValuesIDS = allValuesIDSwith defIDSDepth defIDSInc --- Return all values in a search tree via iterative-deepening search. --- The first argument is the initial depth bound and --- the second argument is a function to increase the depth in each --- iteration. allValuesIDSwith :: Int -> (Int -> Int) -> SearchTree a -> [a] allValuesIDSwith initdepth incrdepth = allValuesWith (idsStrategyWith initdepth incrdepth) --- Return all values in a search tree via diagonalization search strategy. allValuesDiag :: SearchTree a -> [a] allValuesDiag = allValuesWith diagStrategy --- Gets all values of an expression w.r.t. a search strategy. --- A search strategy is an operation to traverse a search tree --- and collect all values, e.g., 'dfsStrategy' or 'bfsStrategy'. --- Conceptually, all values are computed on a copy of the expression, --- i.e., the evaluation of the expression does not share any results. getAllValuesWith :: Strategy a -> a -> IO [a] getAllValuesWith strategy exp = do t <- getSearchTree exp return (vsToList (strategy t)) --- Prints all values of an expression w.r.t. a search strategy. --- A search strategy is an operation to traverse a search tree --- and collect all values, e.g., 'dfsStrategy' or 'bfsStrategy'. --- Conceptually, all printed values are computed on a copy of the expression, --- i.e., the evaluation of the expression does not share any results. printAllValuesWith :: Show a => Strategy a -> a -> IO () printAllValuesWith strategy exp = getAllValuesWith strategy exp >>= mapM_ print --- Prints the values of an expression w.r.t. a search strategy --- on demand by the user. Thus, the user must type <ENTER> before --- another value is computed and printed. --- A search strategy is an operation to traverse a search tree --- and collect all values, e.g., 'dfsStrategy' or 'bfsStrategy'. --- Conceptually, all printed values are computed on a copy of the expression, --- i.e., the evaluation of the expression does not share any results. printValuesWith :: Show a => Strategy a -> a -> IO () printValuesWith strategy exp = getAllValuesWith strategy exp >>= printValues where printValues [] = return () printValues (x:xs) = do putStr (show x) hFlush stdout _ <- getLine printValues xs ------------------------------------------------------------------------------ --- Returns some value for an expression. --- --- Note that this operation is not purely declarative since --- the computed value depends on the ordering of the program rules. --- Thus, this operation should be used only if the expression --- has a single value. It fails if the expression has no value. someValue :: a -> a someValue = someValueWith bfsStrategy --- Returns some value for an expression w.r.t. a search strategy. --- A search strategy is an operation to traverse a search tree --- and collect all values, e.g., 'dfsStrategy' or 'bfsStrategy'. --- --- Note that this operation is not purely declarative since --- the computed value depends on the ordering of the program rules. --- Thus, this operation should be used only if the expression --- has a single value. It fails if the expression has no value. someValueWith :: Strategy a -> a -> a someValueWith strategy x = head (vsToList (strategy (someSearchTree x))) ------------------------------------------------------------------------------ --- The subsequent part defines a data structure for sequence of values --- which is used in the implementation of search trees. --- Using sequence of values (rather than standard lists of values) --- is necessary to get the behavior of set functions --- w.r.t. finite failures right, as described in the paper --- --- > J. Christiansen, M. Hanus, F. Reck, D. Seidel: --- > A Semantics for Weakly Encapsulated Search in Functional Logic Programs --- > Proc. 15th International Conference on Principles and Practice --- > of Declarative Programming (PPDP'13), pp. 49-60, ACM Press, 2013 --- --- Note that the implementation for PAKCS is simplified in order to provide --- some functionality used by other modules. --- In particular, the intended semantics of failures is not provided --- in the PAKCS implementation. --- A value sequence is an abstract sequence of values. --- It also contains failure elements in order to implement the semantics --- of set functions w.r.t. failures in the intended manner (only in KiCS2). data ValueSequence a = EmptyVS | ConsVS a (ValueSequence a) --- An empty sequence of values. emptyVS :: ValueSequence a emptyVS = EmptyVS --- Adds a value to a sequence of values. addVS :: a -> ValueSequence a -> ValueSequence a addVS = ConsVS --- Adds a failure to a sequence of values. --- The argument is the encapsulation level of the failure. failVS :: Int -> ValueSequence a failVS _ = EmptyVS -- cannot be implemented in PAKCS!" --- Concatenates two sequences of values. (|++|) :: ValueSequence a -> ValueSequence a -> ValueSequence a xs |++| ys = case xs of EmptyVS -> ys ConsVS z zs -> ConsVS z (zs |++| ys) --- Transforms a sequence of values into a list of values. vsToList :: ValueSequence a -> [a] vsToList EmptyVS = [] vsToList (ConsVS x xs) = x : vsToList xs ------------------------------------------------------------------------------ |