1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
-----------------------------------------------------------------------------
--- This library contains data types for a binary representation of
--- natural and integers.
--- It is based on the paper _Declaring Numbers_ by Brassel/Fischer/Huch
--- [ENTCS 216, 2008](http://dx.doi.org/10.1016/j.entcs.2008.06.037).
---
--- The advantage of this algebraic definition in contrast to built-in
--- integers is the possibility to use them also for narrowing, i.e.,
--- functional logic programming. Since the operations are also quite
--- efficient compared to a simple Peano representations, this library
--- is also the basis of the implementation of integers in the Curry
--- implementation [KiCS2](https://www.curry-lang.org/kics2/).

--- @version April 2025
-----------------------------------------------------------------------------

module Data.BinInt where

import Test.Prop

-----------------------------------------------------------------------------
-- Nat
-----------------------------------------------------------------------------

--- Algebraic data type to represent natural numbers.
--- @cons IHi - most significant bit
--- @cons O   - multiply with 2
--- @cons I   - multiply with 2 and add 1
data Nat = IHi | O Nat | I Nat
 deriving Eq

--- We show natural numbers as traditional integers.
instance Show Nat where
  show n = show (fromNat n)

--- We read natural numbers as traditional integers.
instance Read Nat where
  readsPrec p s = map (\ (n,r) -> (toNat n, r)) (readsPrec p s)


--- Successor, O(n)
succ :: Nat -> Nat
succ IHi    = O IHi        -- 1       + 1 = 2
succ (O bs) = I bs         -- 2*n     + 1 = 2*n + 1
succ (I bs) = O (succ bs)  -- 2*n + 1 + 1 = 2*(n+1)

--- Predecessor, O(n)
pred :: Nat -> Nat
pred IHi         = failed     -- 1 has no predecessor
pred (O IHi)     = IHi        -- 2           - 1 = 1
pred (O x@(O _)) = I (pred x) -- 2*2*n       - 1 = 2*(2*n-1) + 1
pred (O (I x))   = I (O x)    -- 2*(2*n + 1) - 1 = 2*2*n + 1
pred (I x)       = O x        -- 2*n + 1      -1 = 2*n

--- Addition, O(max (m, n))
(+^) :: Nat -> Nat -> Nat
IHi +^ y   = succ y           -- 1  +  n   = n + 1
O x +^ IHi = I x              -- 2*n + 1   = 2*n + 1
O x +^ O y = O (x +^ y)       -- 2*m + 2*n = 2*(m+n)
O x +^ I y = I (x +^ y)
I x +^ IHi = O (succ x)
I x +^ O y = I (x +^ y)
I x +^ I y = O (succ x +^ y)

--- Subtraction
(-^) :: Nat -> Nat -> BinInt
IHi     -^ y     = inc (Neg y)           -- 1-n = 1+(-n)
x@(O _) -^ IHi   = Pos (pred x)          --
(O x)   -^ (O y) = mult2 (x -^ y)
(O x)   -^ (I y) = dec (mult2 (x -^ y))
(I x)   -^ IHi   = Pos (O x)
(I x)   -^ (O y) = inc (mult2 (x -^ y))  -- 2*n+1 - 2*m = 1+2*(n-m)
(I x)   -^ (I y) = mult2 (x -^ y)        -- 2*n+1 - (2*m+1) = 2*(n-m)

--- Multiplication by 2
mult2 :: BinInt -> BinInt
mult2 (Pos n) = Pos (O n)
mult2 Zero    = Zero
mult2 (Neg n) = Neg (O n)

--- Multiplication, O(m*n)
(*^) :: Nat -> Nat -> Nat
IHi   *^ y = y
(O x) *^ y = O (x *^ y)
(I x) *^ y = y +^ (O (x *^ y))
-- (I x) *^ IHi = I x
-- (I x) *^ (O y) = (O y) +^ (O (x *^ (O y))) = O (y +^ (x *^ (O y)))
-- (I x) *^ (I y) = (I y) +^ (O (x *^ (I y))) = I (y +^ (x *^ (I y)))

--- Division by 2
div2 :: Nat -> Nat
div2 IHi   = failed -- 1 div 2 is not defined for Nat
div2 (O x) = x
div2 (I x) = x

--- Modulo by 2
mod2 :: Nat -> BinInt
mod2 IHi   = Pos IHi
mod2 (O _) = Zero
mod2 (I _) = Pos IHi

--- Comparison of natural numbers, O(min (m,n))
cmpNat :: Nat -> Nat -> Ordering
cmpNat IHi   IHi   = EQ
cmpNat IHi   (O _) = LT
cmpNat IHi   (I _) = LT
cmpNat (O _) IHi   = GT
cmpNat (O x) (O y) = cmpNat x y
cmpNat (O x) (I y) = case cmpNat x y of
  EQ    -> LT
  cmpxy -> cmpxy
cmpNat (I _) IHi   = GT
cmpNat (I x) (O y) = case cmpNat x y of
  EQ    -> GT
  cmpxy -> cmpxy
cmpNat (I x) (I y) = cmpNat x y

--- Quotient and remainder.
quotRemNat :: Nat -> Nat -> (BinInt, BinInt)
quotRemNat x y
  | y == IHi  = (Pos x, Zero   ) -- quotRemNat x 1 = (x, 0)
  | x == IHi  = (Zero , Pos IHi) -- quotRemNat 1 y = (0, 1)
  | otherwise = case cmpNat x y of
      EQ -> (Pos IHi, Zero )   -- x = y : quotRemNat x y = (1, 0)
      LT -> (Zero   , Pos x)   -- x < y : quotRemNat x y = (0, x)
      GT -> case quotRemNat (div2 x) y of
        (Neg _, _    ) -> error "quotRemNat: negative quotient"
        (Zero , _    ) -> (Pos IHi  , x -^ y) -- x > y, x/2 < y  : quotRemNat x y = (1, x - y)
        (Pos _, Neg _) -> error "quotRemNat: negative remainder"
        (Pos d, Zero ) -> (Pos (O d), mod2 x)
        (Pos d, Pos m) -> case quotRemNat (shift x m) y of
          (Neg _ , _ ) -> error "quotRemNat: negative quotient"
          (Zero  , m') -> (Pos (O d)      , m')
          (Pos d', m') -> (Pos (O d +^ d'), m')
  where
    shift IHi   _ = error "quotRemNat.shift: IHi"
    shift (O _) n = O n
    shift (I _) n = I n

-----------------------------------------------------------------------------
-- Integer
-----------------------------------------------------------------------------

--- Algebraic data type to represent integers.
data BinInt = Neg Nat | Zero | Pos Nat
 deriving Eq

--- We show binary numbers as traditional integers.
instance Show BinInt where
  show n = show (fromBinInt n)

--- We read binary numbers as traditional integers.
instance Read BinInt where
  readsPrec p s = map (\ (n,r) -> (toBinInt n, r)) (readsPrec p s)


--- Less-than-or-equal on BinInt
lteqInteger :: BinInt -> BinInt -> Bool
lteqInteger x y = cmpInteger x y /= GT

--- Comparison on BinInt, O(min (m, n))
cmpInteger :: BinInt -> BinInt -> Ordering
cmpInteger Zero    Zero    = EQ
cmpInteger Zero    (Pos _) = LT
cmpInteger Zero    (Neg _) = GT
cmpInteger (Pos _) Zero    = GT
cmpInteger (Pos x) (Pos y) = cmpNat x y
cmpInteger (Pos _) (Neg _) = GT
cmpInteger (Neg _) Zero    = LT
cmpInteger (Neg _) (Pos _) = LT
cmpInteger (Neg x) (Neg y) = cmpNat y x

--- Unary minus. Usually written as "- e".
neg :: BinInt -> BinInt
neg Zero    = Zero
neg (Pos x) = Neg x
neg (Neg x) = Pos x

--- Increment
inc :: BinInt -> BinInt
inc Zero        = Pos IHi
inc (Pos n)     = Pos (succ n)
inc (Neg IHi)   = Zero
inc (Neg (O n)) = Neg (pred (O n))
inc (Neg (I n)) = Neg (O n)

--- Decrement
dec :: BinInt -> BinInt
dec Zero        = Neg IHi
dec (Pos IHi)   = Zero
dec (Pos (O n)) = Pos (pred (O n))
dec (Pos (I n)) = Pos (O n)
dec (Neg n)     = Neg (succ n)

--- Adds two BinInts.
(+#)   :: BinInt -> BinInt -> BinInt
Zero      +# x     = x
x@(Pos _) +# Zero  = x
Pos x     +# Pos y = Pos (x +^ y)
Pos x     +# Neg y = x -^ y
x@(Neg _) +# Zero  = x
Neg x     +# Pos y = y -^ x
Neg x     +# Neg y = Neg (x +^ y)

--- Subtracts two BinInts.
(-#)   :: BinInt -> BinInt -> BinInt
x -# Zero  = x
x -# Pos y = x +# Neg y
x -# Neg y = x +# Pos y

--- Multiplies two BinInts.
(*#)   :: BinInt -> BinInt -> BinInt
Zero  *# _     = Zero
Pos _ *# Zero  = Zero
Pos x *# Pos y = Pos (x *^ y)
Pos x *# Neg y = Neg (x *^ y)
Neg _ *# Zero  = Zero
Neg x *# Pos y = Neg (x *^ y)
Neg x *# Neg y = Pos (x *^ y)

--- Quotient and Remainder, truncated against zero
quotRemInteger :: BinInt -> BinInt -> (BinInt, BinInt)
quotRemInteger _       Zero    = failed -- division by zero is not defined
quotRemInteger Zero    (Pos _) = (Zero, Zero)
quotRemInteger Zero    (Neg _) = (Zero, Zero)
quotRemInteger (Pos x) (Pos y) = quotRemNat x y
quotRemInteger (Neg x) (Pos y) = let (d, m) = quotRemNat x y in (neg d, neg m)
quotRemInteger (Pos x) (Neg y) = let (d, m) = quotRemNat x y in (neg d,     m)
quotRemInteger (Neg x) (Neg y) = let (d, m) = quotRemNat x y in (d    , neg m)

--- Quotient and Remainder, truncated against negative infinity
divModInteger :: BinInt -> BinInt -> (BinInt, BinInt)
divModInteger _       Zero    = failed -- division by zero is not defined
divModInteger Zero    (Pos _) = (Zero, Zero)
divModInteger Zero    (Neg _) = (Zero, Zero)
divModInteger (Pos x) (Pos y) = quotRemNat x y
divModInteger (Neg x) (Pos y) = let (d, m) = quotRemNat x y in case m of
  Zero -> (neg d, m)
  _    -> (neg (inc d), (Pos y) -# m)
divModInteger (Pos x) (Neg y) = let (d, m) = quotRemNat x y in case m of
  Zero -> (neg d, m)
  _    -> (neg (inc d), m -# (Pos y))
divModInteger (Neg x) (Neg y) = let (d, m) = quotRemNat x y in (d, neg m)

--- Integer divisor, truncated towards negative infinity.
divInteger :: BinInt -> BinInt -> BinInt
divInteger x y = fst (divModInteger x y)

--- Integer modulo, truncated towards negative infinity.
modInteger :: BinInt -> BinInt -> BinInt
modInteger x y = snd (divModInteger x y)

--- Integer quotient, truncated towards zero.
quotInteger :: BinInt -> BinInt -> BinInt
quotInteger x y = fst (quotRemInteger x y)

--- Integer remainder, truncated towards zero.
remInteger :: BinInt -> BinInt -> BinInt
remInteger x y = snd (quotRemInteger x y)

-----------------------------------------------------------------------------
-- Conversion operations.

--- Converts a binary natural number into an integer constant.
fromNat :: Nat -> Int
fromNat IHi = 1
fromNat (O n) = 2 * fromNat n
fromNat (I n) = 2 * fromNat n + 1

-- Postcondition: the result of `fromNat` is not negative.
fromNat'post :: Nat -> Int -> Bool
fromNat'post _ n = n > 0

--- Transforms a positive standard integer into a natural number.
toNat :: Int -> Nat
toNat n | n == 1 = IHi
        | even n = O (toNat (n `div` 2))
        | odd  n = I (toNat ((n - 1) `div` 2))

-- Precondition: `toNat` must be called with non-negative numbers
toNat'pre :: Int -> Bool
toNat'pre n = n > 0

--- Converts a binary integer into an integer constant.
fromBinInt :: BinInt -> Int
fromBinInt (Neg n) = - (fromNat n)
fromBinInt Zero    = 0
fromBinInt (Pos n) = fromNat n

--- Transforms a standard integer into a binary integer.
toBinInt :: Int -> BinInt
toBinInt n | n == 0 = Zero
           | n > 0  = Pos (toNat n)
           | n < 0  = Neg (toNat (0 - n))

-----------------------------------------------------------------------------

--- Binary numbers as a `Num` instance.
instance Num BinInt where
  x + y = x +# y
  x - y = x -# y
  x * y = x *# y

  negate x = neg x

  abs (Pos x) = Pos x
  abs Zero    = Zero
  abs (Neg x) = Pos x

  signum (Pos _) = Pos IHi
  signum Zero    = Zero
  signum (Neg _) = Neg IHi

  fromInt x = toBinInt x

-----------------------------------------------------------------------------