1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
----------------------------------------------------------------------------
--- Fixpoint analyzer for call patterns
---
--- @author Michael Hanus
--- @version January 2012
----------------------------------------------------------------------------

import TRS
import List
import ReadFlatTRS
import Sort(mergeSortBy,leqString,leqList)
import Profile
import System(getArgs)
import FileGoodies
import ReadNumeric(readNat)
import TableRBT
import NondetAnalysis
import LetDropping
import Directory
import IO
import ShowFlatCurry
import qualified FlatCurry.Types as FC

----------------------------------------------------------------------------
-- Directories and files to store analysis results
analysisDir = ".curry/analysis"

-- Create analysis directory for a given base file name, if necessary.
createAnalysisDir :: String -> IO ()
createAnalysisDir base = do
  let anadir = dirName base ++ "/" ++ analysisDir
  exanadir <- doesDirectoryExist anadir
  if exanadir then done
              else createDirectory anadir

-- Nondet info file for a given module
ndInfoFileName file =
  let (dir,base) = splitDirectoryBaseName file
      basemod = stripSuffix base
   in dir ++ "/" ++ analysisDir ++ "/" ++ basemod ++ ".ndinfo"

-- strictness info file for a given module
strictInfoFileName file =
  let (dir,base) = splitDirectoryBaseName file
      basemod = stripSuffix base
   in dir ++ "/" ++ analysisDir ++ "/" ++ basemod ++ ".strictinfo"

----------------------------------------------------------------------------
-- Structure to represent abstract domains.
-- An abstract domain has the structure
--   (ADom abottom avar acons matchterms domleq ordleq showaterm)
-- and contains the following components:
-- abottom   : abstract bottom element
-- avar      : maps a free variable (number) into an abstract term
-- acons     : maps a constructor and abstract terms into an abstract term
-- matchterms: abstract matching of terms
-- domleq    : information ordering on abstract terms
-- ordleq    : "less-or-equal" ordering on abstract terms (to sort sets)
-- showaterm : show an abstract term
-- applyprim : possible application of predefined operations
--             (Nothing: not a predefined operation, Just abstract_result)

data ADom a = ADom a
                   (Int -> a)
                   (String -> [a] -> a)
                   ([Term] -> [a] -> Maybe (Sub a))
                   (a -> a -> Bool)
                   (a -> a -> Bool)
                   (a -> String)
                   (String -> [a] -> Maybe a)

-- Returns bottom element of abstract domain
adomBottom :: ADom a -> a
adomBottom (ADom abottom _ _ _ _ _ _ _) = abottom

-- Returns "show" operation of abstract domain
adomShow :: ADom a -> (a -> String)
adomShow (ADom _ _ _ _ _ _ ashow _) = ashow

-- Returns "less-or-equal" operation of abstract domain
adomLeq :: ADom a -> (a -> a -> Bool)
adomLeq (ADom _ _ _ _ _ aleq _ _) = aleq

-- map a function applied to constructor terms
-- into an abstract abstract call w.r.t. a given domain
abstractCall :: ADom a -> (String,[Term]) -> (String,[a])
abstractCall (ADom _ avar acons _ _ _ _ _) (f,cargs) = (f, map cons2aterm cargs)
 where
  -- map a constructor term into abstract term
  cons2aterm (Var v) = avar v
  cons2aterm (Func Cons c args) = acons c (map cons2aterm args)
  cons2aterm (Func Def _ _) = error "cons2aterm: Func Def occurred"

----------------------------------------------------------------------------
-- Semantic equation (part of an interpretation): f args = result
data SemEq aterm = Eq String [aterm] aterm

-- (Abstract) Interpretation: list of semantic equations
type SemInt aterm = [SemEq aterm]

-- Substitutions: first simple implementation as string/value pairs
type Sub a = [(Int,a)]

---------------------------------------------------------------------------
-- Concrete domain: constructor terms

-- Constructor terms with bottom elements:
data CTerm = CBot | CVar Int | CCons String [CTerm]

-- pairwise matching of a list of patterns against a list of terms
matchCTerms :: [Term] -> [CTerm] -> Maybe (Sub CTerm)
matchCTerms []     []     = Just []
matchCTerms []     (_:_)  = Nothing
matchCTerms (_:_)  []     = Nothing
matchCTerms (x:xs) (y:ys) = combineSubst (match x y) (matchCTerms xs ys)
 where
  combineSubst Nothing   _         = Nothing
  combineSubst (Just _ ) Nothing   = Nothing
  combineSubst (Just s1) (Just s2) = Just (s1++s2)

  -- match a linear pattern against a term with disjoint variables:
  match :: Term -> CTerm -> Maybe (Sub CTerm)
  match (Var v) t = Just [(v,t)]
  match (Func _ pf pargs) t = case t of
    CBot           -> Nothing
    CVar _         -> Nothing
    CCons tf targs -> if pf==tf then matchCTerms pargs targs else Nothing

-- is bottom term t1 a generalization (i.e., with less information) than t2?
lessCSpecific :: CTerm -> CTerm -> Bool
lessCSpecific CBot _ = True
lessCSpecific (CVar _) _ = False
lessCSpecific (CCons c1 args1) t2 = case t2 of
  CCons c2 args2 -> c1==c2 && all (uncurry lessCSpecific) (zip args1 args2)
  _              -> False

-- "less-or-equal" comparison to order constructor terms (used to sort sets
-- of contructor terms):
leqCTerm :: CTerm -> CTerm -> Bool
leqCTerm CBot _ = True
leqCTerm (CVar _) CBot = False
leqCTerm (CVar v1) (CVar v2) = v1 <= v2
leqCTerm (CVar _) (CCons _ _) = True
leqCTerm (CCons c1 args1) t2 = case t2 of
  CCons c2 args2 -> if c1==c2 then leqList leqCTerm args1 args2
                              else leqString c1 c2
  _              -> False

-- show a constructor term
showCTerm :: CTerm -> String
showCTerm CBot = "_"
showCTerm (CVar i) = 'x' : show i
showCTerm (CCons f []) = f
showCTerm (CCons f args@(_:_)) =
  f ++ "(" ++ concat (intersperse "," (map showCTerm args)) ++ ")"

-- The structure of the concrete domain:
concreteDom :: ADom CTerm
concreteDom = ADom CBot (error "Cannot handle free variables") CCons
                   matchCTerms lessCSpecific leqCTerm showCTerm (\_ _ -> Nothing)


----------------------------------------------------------------------------
-- Abstract domain: depth-k terms

-- depth-k terms are constructor terms with cut variables:
data DTerm = DBot | DCons String [DTerm] | CutVar

-- pairwise matching of a list of patterns against a list of terms
matchDTerms :: [Term] -> [DTerm] -> Maybe (Sub DTerm)
matchDTerms [] [] = Just []
matchDTerms [] (_:_) = Nothing
matchDTerms (_:_) [] = Nothing
matchDTerms (x:xs) (y:ys) = combineSubst (match x y) (matchDTerms xs ys)
 where
  combineSubst Nothing   _         = Nothing
  combineSubst (Just _ ) Nothing   = Nothing
  combineSubst (Just s1) (Just s2) = Just (s1++s2)

  -- match a linear pattern against a term with disjoint variables:
  match :: Term -> DTerm -> Maybe (Sub DTerm)
  match (Var v) t = Just [(v,t)]
  match (Func _ pf pargs) t = case t of
    DBot   -> Nothing
    CutVar -> Just (map (\v->(v,CutVar)) (concatMap varsOf pargs))
    DCons tf targs -> if pf==tf then matchDTerms pargs targs else Nothing

-- apply constructor on depth-k terms
consDTerm :: Int -> String -> [DTerm] -> DTerm
consDTerm maxdepth c args = cutDTerm maxdepth (DCons c args)

-- cut a depth-k term larger than a given depth:
cutDTerm :: Int -> DTerm -> DTerm
cutDTerm _ DBot = DBot
cutDTerm _ CutVar = CutVar
cutDTerm d (DCons c args) | d==0      = CutVar
                          | otherwise = DCons c (map (cutDTerm (d-1)) args)

-- is abstract term t1 a generalization (i.e., with less information) than t2?
lessDSpecific :: DTerm -> DTerm -> Bool
lessDSpecific DBot _ = True
lessDSpecific CutVar t = t==CutVar
lessDSpecific (DCons c1 args1) t2 = case t2 of
  DCons c2 args2 -> c1==c2 && all (uncurry lessDSpecific) (zip args1 args2)
  _              -> False

-- "less-or-equal" comparison to order depth-k terms (used to sort sets
-- of abstract terms):
leqDTerm :: DTerm -> DTerm -> Bool
leqDTerm DBot _ = True
leqDTerm CutVar DBot = False
leqDTerm CutVar CutVar = True
leqDTerm CutVar (DCons _ _) = False
leqDTerm (DCons c1 args1) t2 = case t2 of
  DCons c2 args2 -> if c1==c2 then leqList leqDTerm args1 args2
                              else leqString c1 c2
  DBot           -> False
  CutVar         -> True

-- Abstract application of a primitive operation to abstract terms.
-- The result is Nothing if this application is not defined, e.g.,
-- becuase the operation is not a primitive one.
applyPrimDTerm :: String -> [DTerm] -> Maybe DTerm
applyPrimDTerm f args
 | f `elem` allStrictOps
  = if DBot `elem` args
    then Just DBot   -- these primitive operations are strict in all arguments
    else Just CutVar -- otherwise we do not know anything
 | f `elem` fstP2StrictOps
  = if head args == DBot
    then Just DBot  -- strict in first argument
    else Just (args!!1) -- otherwise it is as most defined as second argument
 | f == "failed"
  = Just DBot -- result of failed is always undefined
 | otherwise = Nothing
 where
  -- operations strict in all arguments
  allStrictOps = ["+","-","*","mod","div","<","<=",">",">=","==","/=",
                  "=:=","show","isEmpty"]
  -- operations strict in first argument and projection on second argument
  fstP2StrictOps = ["cond","set1"]

-- show a depth-k term
showDTerm :: DTerm -> String
showDTerm DBot = "_"
showDTerm CutVar = "*"
showDTerm (DCons f []) = f
showDTerm (DCons f args@(x:xs))
 | f == ":" && length xs == 1 = -- format list constructor:
   showDTerm x ++ ":" ++ showDTerm (head xs)
 | take 2 f == "(," = -- format tuple constructors:
   "(" ++ concat (intersperse "," (map showDTerm args)) ++ ")"
 | otherwise =
   f ++ "(" ++ concat (intersperse "," (map showDTerm args)) ++ ")"

-- The structure of the depth-k domain (where the depth is given as an
-- argument):
depthDom :: Int -> ADom DTerm
depthDom k = ADom DBot (const CutVar) (consDTerm k) matchDTerms lessDSpecific
                  leqDTerm showDTerm applyPrimDTerm


------------------------------------------------------------------------------
-- Generic operations:

-- generic equality on interpretations (note that equations are kept ordered)
eqSemInt :: SemInt a -> SemInt a -> Bool
eqSemInt = (==)

-- Generic ordered insertion of semantic equations into an interpretation.
-- The first argument is some ordering on terms (compatible with the
-- information ordering on terms). An equation is not inserted
-- if it is already there, i.e., the interpretation is managed as a set.
insertSemEq :: (a->a->Bool) -> SemEq a -> SemInt a -> SemInt a
insertSemEq _ x []     = [x]
insertSemEq dcmp x (y:ys) | x==y               = y : ys
                          | lessSemEq dcmp x y = x : y : ys
                          | otherwise          = y : insertSemEq dcmp x ys

-- Extend an ordering on terms to an ordering on semantic equations.
lessSemEq :: (a->a->Bool) -> SemEq a -> SemEq a -> Bool
lessSemEq dcmp (Eq f1 args1 v1) (Eq f2 args2 v2)
  | f1==f2    = leqList dcmp (args1++[v1]) (args2++[v2])
  | otherwise = leqString f1 f2

-- Generic ordered insertion of semantic equations into an interpretation
-- where existing equations with less information are removed from the
-- interpretation. Thus, the resulting interpretation contains
-- equations with more specific abstract values.
-- First argument: ordering relation on abstract terms (used to order
--                 all equations of the interpretation)
-- Second argument: less-specific ordering on equations
updateSemEq :: (a->a->Bool) -> (SemEq a->SemEq a->Bool) -> SemEq a -> SemInt a
            -> SemInt a
updateSemEq _ _ x []     = [x]
updateSemEq dcmp lessSpecificEq x (y:ys)
 | x == y             = y : ys
 | lessSpecificEq y x = updateSemEq dcmp lessSpecificEq x ys
 | lessSpecificEq x y = y : ys
 | lessSemEq dcmp x y = x : y : ys
 | otherwise          = y : updateSemEq dcmp lessSpecificEq x ys

-- Is semantic equation e1 less specific than e2 w.r.t. some
-- call pattern? The first argument is the information ordering on terms.
-- A semantic equation is less specific iff all arguments and the result
-- of the equations are pairwise less specific.
lessSpecificEqCallPattern :: (a->a->Bool) -> SemEq a -> SemEq a -> Bool
lessSpecificEqCallPattern lessSpecific (Eq f1 args1 v1) (Eq f2 args2 v2) =
  f1==f2 && all (uncurry lessSpecific) (zip args1 args2) && lessSpecific v1 v2

-- Is semantic equation e1 less specific than e2 w.r.t. their results?
-- The first argument is the information ordering on terms.
-- A semantic equation is less specific iff all arguments are identical
-- and the result of the equations are less specific.
lessSpecificEqResult :: (a->a->Bool) -> SemEq a -> SemEq a -> Bool
lessSpecificEqResult lessSpecific (Eq f1 args1 v1) (Eq f2 args2 v2) =
  f1==f2 && args1==args2 && lessSpecific v1 v2

------------------------------------------------------------------------------
-- Transformation on (abstract) interpretations:
-- (transformInt adom insertsem trs mains int)
-- adom      : abstract domain
-- insertsem : operation to insert new semantic equation into an interpretation
-- trs       : term rewriting system
-- mains     : main calls (start interpretation)
-- int       : interpretation to be transformed
-- result: transformed interpretation
transformInt :: ADom a -> (SemEq a -> SemInt a -> SemInt a)
             -> [Rule] -> SemInt a -> SemInt a -> SemInt a
transformInt (ADom abottom avar acons matchterms _ _ _ applyprim)
             insertsem trs mains int =
  foldr insertsem mains
        (concatMap (\ (Eq fi argsi _) ->
                     maybe (concatMap (applyRule fi argsi) (fRules fi))
                           (\ares -> [Eq fi argsi ares])
                           (applyprim fi argsi))
                   int)
 where
  fRules f = let rules = funcRules f trs
              in if null rules
                 then error ("Rules of operation '"++f++"' not found!")
                 else rules

  applyRule fi argsi (largs,rhs) =
    maybe []
          (\s -> map (Eq fi argsi) (evalInt s int rhs)
                 ++ concatMap (newSemEq s) (fSubterms rhs))
          (matchterms largs argsi)

  newSemEq s (f,args) =
    map (\iargs -> Eq f iargs abottom) (extendListMap (evalInt s int) args)

  -- abstract evaluation of a term w.r.t. a given substitution and interpretation
  evalInt :: Sub a -> SemInt a -> Term -> [a]
  evalInt sub _ (Var v) = [maybe (avar v) id (lookup v sub)]
  evalInt sub eqs (Func Cons c args) =
    map (acons c) (extendListMap (evalInt sub eqs) args)
  evalInt sub eqs (Func Def f args) =
    let evalargs = extendListMap (evalInt sub eqs) args
     in abottom :
        concatMap (\ (Eq fi argsi r) ->
              if any (\eargs->fi==f && eargs==argsi) evalargs then [r] else [])
                  eqs

-- extend list mapping on a list of elements
extendListMap :: (a -> [b]) -> [a] -> [[b]]
extendListMap _ []     = [[]]
extendListMap f (x:xs) = [ y:ys | y <- f x, ys <- extendListMap f xs]


------------------------------------------------------------------------------
-- Runs a simple fixpoint computation w.r.t. a set of abstract initial calls.
runFixpoint :: ADom a
            -> (SemEq a -> SemInt a -> SemInt a)
            -> [Rule] -> [(String,[a])] -> Bool
            -> ([SemEq a] -> [SemEq a] -> Bool)
            -> IO (SemInt a)
runFixpoint adom insertsem rules mainacalls withprint semeq = do
  let trm = transformInt adom insertsem rules
                         (foldr insertsem [] (map main2int mainacalls))
  --printProgram rules maincalls
  if withprint then done else putStr "Iterating:"
  garbageCollect
  pi1 <- getProcessInfos
  fpsem <- computeFixpoint withprint 0 (showSemInt adom) semeq trm []
  getProcessInfos >>= printTiming pi1
  return fpsem
 where
  -- map a main call into an abstract equation
  main2int (f,aterms) = Eq f aterms (adomBottom adom)

-- Performs an iterated fixpoint computation.
computeFixpoint :: Bool -> Int -> (a->String) -> (a->a->Bool) -> (a->a) -> a
                -> IO a
computeFixpoint withprint n prt eq f v = do
  if withprint then putStrLn (show n ++ ": " ++ prt v)
               else putStr (' ':show n) >> hFlush stdout
  let fv = f v
  if  eq v fv
   then do putStrLn $ "\nFixpoint reached after " ++ show n ++ " iterations"
           return v
   else computeFixpoint withprint (n+1) prt eq f fv


-- show a semantic interpretation w.r.t. an abstract domain
-- (containing a show function for semantic elements)
showSemInt :: ADom a -> SemInt a -> String
showSemInt adom eqs =
  let semIntLine = "{" ++ concat (intersperse ", " (map showEq eqs)) ++ "}"
   in show (length eqs) ++ " semantic equations:\n" ++
      if length semIntLine < 80
      then semIntLine
      else "{" ++ concat (intersperse ",\n " (map showEq eqs)) ++ "}"
 where
  showe = adomShow adom

  showEq (Eq f args r) =
    f ++ (if null args
          then []
          else '(' : concat (intersperse "," (map showe args)) ++ ")")
      ++ " = " ++ showe r

-- get standard main call (i.e., main(var1,...,varn)) from the rules:
getMainCall :: [Rule] -> (String,[Term])
getMainCall rules = ("main", genArgs (arityOf "main" rules))
 where
  genArgs n = map Var [1..n]

-- get standard main calls (i.e., for each function f/n and each
-- i \in [1..n] the call f(var_1,...,var_{i-1},bottom,var_{i+1},...,var_n))
-- from the rules:
genMainCalls :: ADom a -> [Rule] -> [(String,[a])]
genMainCalls (ADom abot avar _ _ _ _ _ _) rules =
  concatMap genStrictCalls (allFunctions rules)
 where
  genStrictCalls (f,n) = map genStrictCall [1..n]
    where genStrictCall i = (f, replace abot (i-1) (map avar [1..n]))

-- Prints a program and a list of abstract main calls.
-- The abstract domain is provided as a first argument.
printProgram :: ADom a -> [Rule] -> [(String,[a])] -> IO ()
printProgram adom rules maincalls = do
  putStrLn $ "\nRewrite rules:\n\n" ++ showTRS rules
  putStrLn $ "\nMain calls: " ++
             concat (intersperse ", " (map showATermCall maincalls))
  putStrLn ""
 where
  showATerm = adomShow adom

  showATermCall (f,args) =
    f ++ (if null args
          then []
          else '(' : concat (intersperse "," (map showATerm args)) ++ ")")

------------------------------------------------------------------------------
-- Fixpoint computation based on working lists.

-- The current semantic equations are represented as a mapping
-- from function names into a list of equations (arguments,results)
-- together with a list of function names on which the equation depends
type WorkSemInt a = TableRBT String [([a],a,[String])]

-- Look up the semantic equations of a function in the current semantics:
fEqsOfWorkSem :: String -> WorkSemInt a -> [([a],a,[String])]
fEqsOfWorkSem f ws = maybe [] id (lookupRBT f ws)

-- Process a working list of (abstract) calls to compute an interpretation:
-- (processWorkList adom lessSpecificEq	showabs trs wl finals)
-- adom      : structure of the abstract domain
-- lessSpecificEq: less-specific ordering on equations (less-specific equations
--                 are usually removed from the abstract semantics)
-- withprint : should intermediate results be printed?
-- trs       : term rewriting system
-- wl        : working list (i.e., list of abstract calls that must be
--             analyzed and inserted in final interpretation)
-- finals    : (currently) final semantic equations together with
--             a list of function names on which they depend
-- result: final interpretation

processWorkList :: ADom a -> (SemEq a->SemEq a->Bool) -> Bool -> [Rule]
                -> [(String,[a])] -> WorkSemInt a -> IO (SemInt a)

processWorkList _ _ _ _ [] finals =
  -- transform the final semantic into the usual format:
  return (concatMap (\ (f,feqs) -> map (\ (args,res,_) -> Eq f args res) feqs)
                    (tableRBT2list finals))

processWorkList adom@(ADom abottom avar acons matchterms _ _ _ applyprim)
       lessSpecificEq withprint trs wl@((fc,eargs) : working) finals = do
  if withprint
   then putStr (" W" ++ show (length wl) ++
                "/F" ++ show (length (tableRBT2list finals)))
   else done
  let fcRules = let rules = funcRules fc trs
                 in if null rules
                    then error ("Rules of operation '"++fc++"' not found!")
                    else rules

      (newwss,newfeqss) = maybe (unzip (map applyRule fcRules))
                                (\ares -> ([],[[(eargs,ares,[])]]))
                                (applyprim fc eargs)

      (newws,newfeqs)   = (concat newwss, concat newfeqss)
      betterCalls       = filter isBetterCall newws
      betterEquations   = filter hasBetterResult
                                 (if null newfeqs
                                  then [(eargs,abottom,[])] -- no matching rule
                                  else newfeqs)
      bestEquations     = filter (\e-> not (any (\ei->ei/=e && leqEqDep e ei)
                                                betterEquations))
                                 betterEquations
      activatedEqs =
        if null bestEquations
        then []
        else concatMap (\ (f,feqs) -> concatMap (\ (args,_,deps) ->
                            if fc `elem` deps then [(f,args)] else []) feqs)
                       (tableRBT2list finals)
  --putStrLn ("WORKING:" ++
  --          showSemInt adom (map (\ (f,args)->Eq f args abottom) wl))
  --putStrLn ("FINAL:" ++ showSemInt adom
  --     (concatMap (\ (f,feqs) -> map (\ (args,res,_) -> Eq f args res) feqs)
  --                (tableRBT2list finals)))
  --putStrLn ("Function: " ++ fc)
  --putStrLn ("BETTER: " ++ show betterEquations)
  --putStrLn ("BEST  : " ++ show bestEquations)
  --putStrLn ("BETTER: " ++ show betterFuncs)
  --putStrLn ("ACTIVE: " ++ show activatedEqs)
  processWorkList adom lessSpecificEq withprint trs
                 (foldr insertIfBetterCall working
                        (betterCalls ++ activatedEqs))
                 (foldr insertBetterIntoRemaining finals bestEquations)
 where
  -- insert better (dependency) equations  and delete all less specific ones:
  insertBetterIntoRemaining bettereq wsem =
    let oldfceqs = fEqsOfWorkSem fc wsem
     in updateRBT fc
          (bettereq : filter (\oldeq -> not (leqEq oldeq bettereq)) oldfceqs)
          wsem

  -- insert given abstract call if there does not already exist one
  -- which is more specific than this one; if the call is inserted,
  -- all less specific calls are removed
  insertIfBetterCall :: (String,[a]) -> [(String,[a])] -> [(String,[a])]
  insertIfBetterCall eq wlist =
    if any (leqCall eq) wlist
    then wlist
    else eq : filter (\e -> not (leqCall e eq)) wlist
   where
    leqCall (f,args) (f',args') = --f==f' && leqOnList domleq args args'
      lessSpecificEq (Eq f args abottom) (Eq f' args' abottom)

  -- is a given abstract call more specific than all equations
  -- in the current final interpretation?
  isBetterCall :: (String,[a]) -> Bool
  isBetterCall (f,args) =
    not (any (\ (args',_,_) -> --leqOnList domleq args args'
                  lessSpecificEq (Eq f args abottom) (Eq f args' abottom))
             (fEqsOfWorkSem f finals))

  -- is a given equation for function fc a better approximation than
  -- anything in the current final equations,
  -- i.e., if there does not already exist one final equation which has
  -- an identical left-hand side but a more specific result than this one
  hasBetterResult :: ([a],a,[String]) -> Bool
  hasBetterResult eq = not (any (leqEq eq) (fEqsOfWorkSem fc finals))

  -- compare given equation: left-hand sides and right-hand sides
  -- in leq relation on terms?
  leqEq (args,r,_) (args',r',_) = --leqOnList domleq args args' && domleq r r'
    lessSpecificEq (Eq fc args r) (Eq fc args' r')

  -- compare given equation and their dependencies:
  -- left- and right-hand sides in leq relation on terms and dependencies
  -- subsumed?
  leqEqDep (args,r,ds) (args',r',ds') =
    lessSpecificEq (Eq fc args r) (Eq fc args' r') && all (`elem` ds') ds

  -- extend term comparison on list of terms
  leqOnList :: (a -> a -> Bool) -> [a] -> [a] -> Bool
  leqOnList _ [] [] = True
  leqOnList leq (x:xs) (y:ys) = leq x y && leqOnList leq xs ys

  applyRule (largs,rhs) =
    maybe ([],[])
          (\s -> (concatMap (newCall s) (fSubterms rhs),
                  map (\ri -> (eargs,ri,depFuncs))
                      (evalInt s finals rhs)))
          (matchterms largs eargs)
   where
    depFuncs = funcsInTerm rhs

  newCall s (f,args) = map (\iargs->(f,iargs))
                           (extendListMap (evalInt s finals) args)

  -- abstract evaluation of a term w.r.t. a substitution and interpretation
  evalInt :: Sub a -> WorkSemInt a -> Term -> [a]
  evalInt sub _ (Var v) = [maybe (avar v) id (lookup v sub)]
  evalInt sub eqs (Func Cons c args) =
    map (acons c) (extendListMap (evalInt sub eqs) args)
  evalInt sub eqs (Func Def f args) =
    let evalargs = extendListMap (evalInt sub eqs) args
        results = concatMap (\ (argsi,r,_) ->
                                  if any (\evargs->evargs==argsi) evalargs
                                  then [r]
                                  else [])
                            (fEqsOfWorkSem  f eqs)
     in if null results then [abottom] else results

-- run a fixpoint computation with working lists starting form a given
-- list of abstract function calls:
runFixpointWL :: ADom a -> (SemEq a->SemEq a->Bool) -> [Rule]
              -> [(String,[a])] -> Bool
              -> IO (SemInt a)
runFixpointWL adom lessSpecificEq rules maincalls withprint = do
  garbageCollect
  pi1 <- getProcessInfos
  finals <- processWorkList adom lessSpecificEq withprint rules
                            maincalls (emptyTableRBT leqString)
  pi2 <- getProcessInfos
  printTiming pi1 pi2
  return finals

-- show timing w.r.t. some process infos at the start and stop point
-- of a computation:
printTiming startPInfos stopPInfos = do
  putStrLn $ "Run time:            "
             ++ (showInfoDiff startPInfos stopPInfos RunTime) ++ " msec."
  putStrLn $ "Elapsed time:        "
             ++ (showInfoDiff startPInfos stopPInfos ElapsedTime) ++ " msec."
  putStrLn $ "Garbage collections: "
             ++ (showInfoDiff startPInfos stopPInfos GarbageCollections)
 where
  showInfoDiff infos1 infos2 item =
    maybe "n/a"
          (\i1 -> show (maybe 0 id (lookup item infos2) - i1))
          (lookup item infos1)


------------------------------------------------------------------------------
--- Main calls to the (abstract) interpreters:
------------------------------------------------------------------------------
-- main function to call the analyser as a saved state:
main = do
  args <- getArgs
  let (depth,max,wlist,callpat,prog) = checkArgs (1,False,True,False,"") args
  if callpat
   then callPatternAnalysis depth max wlist (stripSuffix prog)
   else transformNondet depth max wlist (stripSuffix prog)

mainCallError args = error $ unlines
  [ "Illegal arguments: " ++ unwords args
  , ""
  , "Usage: curry-ndopt [-d <k>] [-max] [-fix|-wlist] [-call] <module_name>"
  , ""
  , "Options:"
  , "<k>   : term depth (default: 1)"
  , "-max  : compute only maximal abstract elements in fixpoints"
  , "-fix  : use simple fixpoint iteration"
  , "-wlist: use working list fixpoint computation (default)"
  , "-call : compute only call patterns (and do not transform program)"
  ]

checkArgs :: (Int,Bool,Bool,Bool,String) -> [String]
          -> (Int,Bool,Bool,Bool,String)
checkArgs (depth,max,wlist,callpat,prog) args = case args of
  [] -> mainCallError []
  ("-d":ks:margs) -> let k = maybe (mainCallError args) fst (readNat ks)
                      in checkArgs (k,max,wlist,callpat,prog) margs
  ("-max":margs) -> checkArgs (depth,True,wlist,callpat,prog) margs
  ("-wlist":margs) -> checkArgs (depth,max,True,callpat,prog) margs
  ("-fix":margs) -> checkArgs (depth,max,False,callpat,prog) margs
  ("-call" :margs) -> checkArgs (depth,max,wlist,True,prog) margs
  [mainmod] -> (depth,max,wlist,callpat,mainmod)
  _ -> mainCallError []

-- Call pattern analysis with depth-k domain.
callPatternAnalysis :: Int -> Bool -> Bool -> String -> IO ()
callPatternAnalysis termdepth keepmax withwlist modname = do
    rules <- readRules modname
    let absdom = depthDom termdepth
        maincalls = [abstractCall absdom (getMainCall rules)]
        lessSpecificEq = lessSpecificEqCallPattern lessDSpecific
        leqterm = adomLeq absdom
    printProgram absdom rules maincalls
    let seminsertion = if keepmax then updateSemEq leqterm lessSpecificEq
                                  else insertSemEq leqterm
    fpsem <- if not withwlist
             then runFixpoint absdom seminsertion rules maincalls False eqSemInt
             else runFixpointWL absdom lessSpecificEq rules maincalls False
    putStrLn (showSemInt absdom (mergeSortBy (lessSemEq leqDTerm) fpsem))

-- Non-determinism transformation by strictness/overlapping analysis
transformNondet :: Int -> Bool -> Bool -> String -> IO ()
transformNondet termdepth keepmax withwlist modname = do
    (FC.Prog _ imports typedecls _ _, rules) <- readFlatCurryRules modname
    let absdom = depthDom termdepth
        maincalls = genMainCalls absdom rules
        lessSpecificEq = lessSpecificEqResult lessDSpecific
        leqterm = adomLeq absdom
    printProgram absdom rules maincalls
    let seminsertion = if keepmax then updateSemEq leqterm lessSpecificEq
                                  else insertSemEq leqterm
    fpsem <- if not withwlist
             then runFixpoint absdom seminsertion rules maincalls False eqSemInt
             else runFixpointWL absdom lessSpecificEq rules maincalls False
    putStrLn (showSemInt absdom (mergeSortBy (lessSemEq leqterm) fpsem))
    let strinfos = sortFuncInfos (extractStrictness absdom fpsem)
    putStrLn ('\n' : showStrictness strinfos)
    createAnalysisDir modname
    writeFile (strictInfoFileName modname) (show strinfos)
    ndinfos <- getNondetInfos modname >>= return . sortFuncInfos
    putStrLn ("Computed non-determinism information:\n"++show ndinfos++"\n")
    writeFile (ndInfoFileName modname) (show ndinfos)
    let (transrules,numopts) = transformRules ndinfos strinfos rules
        newprog = letDropping $ unApply transrules
        newprogtxt = showTRS newprog
    putStrLn $ "Transformed program (stored in '"++modname++"_O.curry'):"
    putStrLn newprogtxt
    writeFile (modname++"_O.curry")
              (unlines (map ("import "++) (filter (/="Prelude") imports)) ++
               concatMap showDataDeclAsCurry typedecls ++ newprogtxt)
    putStrLn $ "Number of performed optimizations: " ++ show numopts

-----------------------------------------------------------------------
-- Remove all occurrences of generated apply operation in a program
unApply :: [Rule] -> [Rule]
unApply = map unApplyInRule . filter (not . applyRule)
 where
  -- does the rule defines the generated apply operation?
  applyRule (Rule f _ _) = f == "apply"

  unApplyInRule :: Rule -> Rule
  unApplyInRule (Rule f args exp) = Rule f args (unApplyInExp exp)

  unApplyInExp :: Term -> Term
  unApplyInExp (Var i) = Var i
  unApplyInExp (Func Cons c args) = Func Cons c (map unApplyInExp args)
  unApplyInExp (Func Def f args) =
    if f=="apply" && length args == 2
    then Func Def "$" args
    else Func Def f (map unApplyInExp args)

-----------------------------------------------------------------------
-- Optimize program w.r.t. non-determinism and strictness information
-- Returns new rules and number of optimization transformations performed
transformRules :: [(String,Bool)] -> [(String,[Int])] -> [Rule] -> ([Rule],Int)
transformRules ndinfos strinfos rules =
  let (newrules,numopts) = unzip $
        map (\ (Rule f args exp) ->
              let (newrhs,_,numopt) = transformExp ndinfos strinfos exp
               in (Rule f args newrhs, numopt))
            rules
   in (newrules, foldr (+) 0 numopts)

-- Transform expression w.r.t. non-determinism and strict information.
-- Returns:
-- * transformed expression
-- * is the expression non-deterministic?
-- * number of optimization transformations applied
transformExp :: [(String,Bool)] -> [(String,[Int])] -> Term -> (Term,Bool,Int)
transformExp _ _ (Var i) = (Var i, False, 0)
transformExp ndinfos strinfos (Func Cons c args) =
  let (targs,ndargs,numopts) = unzip3 (map (transformExp ndinfos strinfos) args)
   in (Func Cons c targs, or ndargs, foldr (+) 0 numopts)
transformExp ndinfos strinfos (Func Def f args) =
  let (targs,ndargs,numopts) = unzip3 (map (transformExp ndinfos strinfos) args)
      isndexp = (maybe False id (lookup f ndinfos)) || or ndargs
      fsargs  = maybe [] id (lookup f strinfos)
      argopts = foldr (+) 0 numopts
      strictapplies = foldr (\si sargs -> replace (ndargs!!(si-1)) (si-1) sargs)
                            (take (length args) (repeat False))
                            fsargs
   in if null fsargs || not (or ndargs) || not (or strictapplies)
      then (Func Def f targs, isndexp, argopts)
      else (strictApply (Func Def f []) strictapplies targs, isndexp, argopts+1)
 where
  strictApply exp [] [] = exp
  strictApply exp (str:strs) (x:xs) =
    strictApply (Func Def (if str then "$!" else "$") [exp,x]) strs xs

-- extract list of strict arguments for each function from least fixpoint
extractStrictness :: ADom a -> SemInt a -> [(String,[Int])]
extractStrictness adom aint = map checkStrictArgs allfuncs
 where
  abot = adomBottom adom

  allfuncs = nub (map (\ (Eq f args _) -> (f,length args)) aint)

  checkStrictArgs (f,n) = (f,concatMap checkStrictArg [1..n])
   where
     checkStrictArg i =
       let argibotEqs = filter (\ (Eq g args _) -> f==g && args!!(i-1) == abot)
                               aint
        in if not (null argibotEqs) && all (\ (Eq _ _ r) -> r==abot) argibotEqs
           then [i]
           else []

-- Sort list of operation information by function names:
sortFuncInfos :: [(String,a)] -> [(String,a)]
sortFuncInfos = mergeSortBy (\i1 i2 -> fst i1 <= fst i2)

-- Show strictness information of all functions a little bit formatted:
showStrictness :: [(String,[Int])] -> String
showStrictness info =
  "Computed strictness information:\n"++
  unlines (map (\ (f,sargs) -> if null sargs
                               then f++" not strict"
                               else f++" strict at "++
                                    concat (intersperse "," (map show sargs)))
               info)

------------------------------------------------------------------------------
-- operations for benchmarking

-- define where to look for the benchmark programs:
prog2DirFile p = "benchmarks_callpattern/"++p

-- benchmark different interpretation methods:
bench k file = do
  putStrLn (take 70 (repeat '='))
  rules <- readRules (prog2DirFile file)
  let absdom = depthDom k
      maincalls = [abstractCall absdom (getMainCall rules)]
      leqterm = adomLeq absdom
  printProgram absdom rules maincalls
  putStrLn $ "\nTotal number of rules: " ++ show (length rules)
  putStrLn "\nRunning simple call analysis..."
  semsimple <- runFixpoint absdom (insertSemEq leqterm)
                           rules maincalls False eqSemInt
  putStrLn (showSemInt absdom semsimple)
  putStrLn "\nRunning call analysis with ordered insertion..."
  semord <- runFixpoint absdom (updateSemEq leqterm
                                  (lessSpecificEqCallPattern lessDSpecific))
                        rules maincalls False eqSemInt
  putStrLn (showSemInt absdom semord)
  putStrLn "\nRunning call analysis with working lists..."
  semwl <- runFixpointWL absdom (lessSpecificEqCallPattern lessDSpecific)                                 rules maincalls False >>=
           return . mergeSortBy (lessSemEq leqterm)
  if semord==semwl
   then done
   else putStrLn (showSemInt absdom semwl)

-- run the benchmarks of the examples directory:
runBench = do
  bench 1 "addadd"
  bench 2 "addlast"
  bench 1 "bertf0"
  bench 1 "bertconc"
  bench 1 "doublecoin"
  bench 1 "family"
  bench 2 "halfdouble"
  bench 1 "head"
  bench 1 "lastapp"
  bench 8 "readfile"
  bench 2 "mapadddouble"
  bench 1 "risers"
  bench 1 "tails"

------------------------------------------------------------------------------