
1 CASS: A Generic Curry Analysis Server System

CASS (Curry Analysis Server System) is a tool for the analysis of Curry programs. CASS is generic
so that various kinds of analyses (e.g., groundness, non-determinism, demanded arguments) can be
easily integrated into CASS. In order to analyze larger applications consisting of dozens or hundreds
of modules, CASS supports a modular and incremental analysis of programs. Moreover, it can be
used by different programming tools, like documentation generators, analysis environments, program
optimizers, as well as Eclipse-based development environments. For this purpose, CASS can also
be invoked as a server system to get a language-independent access to its functionality. CASS is
completely implemented Curry as a master/worker architecture to exploit parallel or distributed
execution environments. The general design and architecture of CASS is described in [1]. In the
following, CASS is presented from a perspective of a programmer who is interested to analyze Curry
programs.

1.1 Installation

The current implementation of CASS is a package managed by the Curry Package Manager CPM.
Thus, to install the newest version of CASS, use the following commands:

> cypm update
> cypm install cass

This downloads the newest package, compiles it, and places the executable cass into the directory
$HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to execute
CASS as described below.

1.2 Using CASS to Analyze Programs

CASS is intended to analyze various operational properties of Curry programs. Currently, it contains
more than a dozen program analyses for various properties. Since most of these analyses are based
on abstract interpretations, they usually approximate program properties. To see the list of all
available analyses, use the help option of CASS:

> cass -h
Usage: . . .
...
Registered analyses names:
. . .

Demand : Demanded arguments
Deterministic : Deterministic operations
...

More information about the meaning of the various analyses can be obtained by adding the short
name of the analysis:

> cass -h Deterministic
. . .

For instance, consider the following Curry module Rev.curry:

1

append :: [a] → [a] → [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

rev :: [a] → [a]
rev [] = []
rev (x:xs) = append (rev xs) [x]

nth :: [a] → Int → a
nth (x:xs) n | n == 0 = x

| n > 0 = nth xs (n - 1)

CASS supports three different usage modes to analyze this program.

1.2.1 Batch Mode

In the batch mode, CASS is started as a separate application via the shell command cass, where
the analysis name and the name of the module to be analyzed must be provided:1

> cass Demand Rev
append : demanded arguments: 1
nth : demanded arguments: 1,2
rev : demanded arguments: 1

The Demand analysis shows the list of argument positions (e.g., 1 for the first argument) which are
demanded in order to reduce an application of the operation to some constructor-rooted value. Here
we can see that both arguments of nth are demanded whereas only the first argument of append is
demanded. This information could be used in a Curry compiler to produce more efficient target
code.

The batch mode is useful to test a new analysis and get the information in human-readable form
so that one can experiment with different abstractions or analysis methods.

1.2.2 API Mode

The API mode is intended to use analysis information in some application implemented in Curry.
Since CASS is implemented in Curry, one can import the modules of the CASS implementation and
use the CASS interface operations to start an analysis and use the computed results. For instance,
CASS provides an operation (defined in module CASS.Server)

analyzeGeneric :: Analysis a → String → IO (Either (ProgInfo a) String)

to apply an analysis (first argument) to some module (whose name is given in the second argument).
The result is either the analysis information computed for this module or an error message in case
of some execution error.

In order to use CASS via the API mode in a Curry program, one has to use the package cass by
the Curry package manager CPM (the subsequent explanation assumes familiarity with the basic
features of CPM):

1More output is generated when the property debugLevel is changed in the configuration file .curryanalysisrc
which is installed in the user’s home directory when CASS is started for the first time.

2

1. Add the dependency on package cass and also on package cass-analysis, which contains some
base definitions, in the package specification file package.json.

2. Install these dependencies by “cypm install”.

Then you can import in your application the modules provided by CASS.
The module Analysis.ProgInfo (from package cass-analysis) contains operations to access the

analysis information computed by CASS. For instance, the operation

lookupProgInfo:: QName → ProgInfo a → Maybe a

returns the information about a given qualified name in the analysis information, if it ex-
ists. As a simple example, consider the demand analysis which is implemented in the module
Analysis.Demandedness by the following operation:

demandAnalysis :: Analysis DemandedArgs

DemendedArgs is just a type synonym for [Int]. We can use this analysis in the following simple
program:

import CASS.Server (analyzeGeneric)
import Analysis.ProgInfo (lookupProgInfo)
import Analysis.Demandedness (demandAnalysis)

demandedArgumentsOf :: String → String → IO [Int]
demandedArgumentsOf modname fname = do

deminfo <- analyzeGeneric demandAnalysis modname >>= return . either id error
return $ maybe [] id (lookupProgInfo (modname,fname) deminfo)

Of course, in a realistic program, the program analysis is performed only once and the computed
information deminfo is passed around to access it several times. Nevertheless, we can use this simple
program to compute the demanded arguments of Rev.nth:

. . .> demandedArgumentsOf "Rev" "nth"
[1,2]

1.2.3 Server Mode

The server mode of CASS can be used in an application implemented in some language that does
not have a direct interface to Curry. In this case, one can connect to CASS via some socket using
a simple communication protocol that is specified in the file Protocol.txt (in package cass) and
sketched below.

To start CASS in the server mode, one has to execute the command

> cass --server [-p <port>]

where an optional port number for the communication can be provided. Otherwise, a free port
number is chosen and shown. In the server mode, CASS understands the following commands:

GetAnalysis
SetCurryPath <dir1>:<dir2>:...
AnalyzeModule <analysis name> <output type> <module name>

3

AnalyzeInterface <analysis name> <output type> <module name>
AnalyzeFunction <analysis name> <output type> <module name> <function name>
AnalyzeDataConstructor <analysis name> <output type> <module name> <constructor name>
AnalyzeTypeConstructor <analysis name> <output type> <module name> <type name>
StopServer

The output type can be Text, CurryTerm, or XML. The answer to each request can have two formats:

error <error message>

if an execution error occured, or

ok <n>
<result text>

where <n> is the number of lines of the result text. For instance, the answer to the command
GetAnalysis is a list of all available analyses. The list has the form

<analysis name> <output type>

For instance, a communication could be:

> GetAnalysis
< ok 5
< Deterministic curryterm
< Deterministic text
< Deterministic json
< HigherOrder curryterm
< DependsOn curryterm

The command SetCurryPath instructs CASS to use the given directories to search for modules to
be analyzed. This is necessary since the CASS server might be started in a different location than
its client.

Complete modules are analyzed by AnalyzeModule, whereas AnalyzeInterface returns only the
analysis information of exported entities. Furthermore, the analysis results of individual functions,
data or type constructors are returned with the remaining analysis commands. Finally, StopServer
terminates the CASS server.

For instance, if we start CASS by

> cass --server -p 12345

we can communicate with CASS as follows (user inputs are prefixed by “>”);

> telnet localhost 12345
Connected to localhost.
> GetAnalysis
ok 198
Functional text
Functional short
Functional curryterm
Functional json
Functional jsonterm
Functional xml

4

Overlapping text
...
> AnalyzeModule Demand text Rev
ok 3
append : demanded arguments: 1
nth : demanded arguments: 1,2
rev : demanded arguments: 1
> AnalyzeModule Demand curryterm Rev
ok 1
[(("Rev","append"),"[1]"),(("Rev","nth"),"[1,2]"),(("Rev","rev"),"[1]")]
> AnalyzeModule Demand json Rev
ok 15
[{

"module": "Rev",
"name": "append",
"result": "demanded arguments: 1"

}
, {

"module": "Rev",
"name": "nth",
"result": "demanded arguments: 1,2"

}
, {

"module": "Rev",
"name": "rev",
"result": "demanded arguments: 1"

}]
> AnalyzeModule Demand xml Rev
ok 19
<?xml version="1.0" standalone="yes"?>

<results>
<operation>

<module>Rev</module>
<name>append</name>
<result>demanded arguments: 1</result>

</operation>
<operation>

<module>Rev</module>
<name>nth</name>
<result>demanded arguments: 1,2</result>

</operation>
<operation>

<module>Rev</module>
<name>rev</name>
<result>demanded arguments: 1</result>

</operation>
</results>
> StopServer

5

ok 0
Connection closed by foreign host.

1.3 Implementing Program Analyses

This section explains the implementation of program analyses available in CASS. Since CASS is
implemented in Curry, a program analysis must also be implemented in Curry and added to the
source code of CASS. Therefore, one has to download the source code which is easily done by the
command

> cypm checkout cass

This downloads the most recent version of CASS as a Curry package into the directory cass.
Each program analysis accessible by CASS must be registered in the CASS module

CASS.Registry. Such an analysis must contain an operation of type

Analysis a

where “a” denotes the type of analysis results. Furthermore, the analysis must also contain a “show”
operation of type

AOutFormat → a → String

intended to show the analysis results in various formats. The type AOutFormat is defined in module
Analysis.Types of package cass-analysis as

data AOutFormat = AText | ANote

It is intended to specify the desired kind of output, e.g., AText for a longer standard textual repre-
sentation or ANote for a short note (e.g., in the Curry Browser).

Thus, in order to add a new analysis to CASS, one has to do the following steps:

1. Implement a corresponding analysis operation and show operation.

2. Registering it in the module CASS.Registry (in the constant registeredAnalysis).

3. Compile/install the modified CASS implementation.

In the following, we explain these steps by some examples. For instance, the Overlapping analysis
should indicate whether a Curry operation is defined by overlapping rules. This analysis can be
implemented as a function

overlapAnalysis :: Analysis Bool

so that the analysis result is False if the analyzed operation is not defined by overlapping rules.
In general, an analysis is implemented as a mapping from Curry operations, represented in

FlatCurry, into the analysis result. Hence, to implement the Overlapping analysis, we define the
following operation on function declarations in FlatCurry format:

import FlatCurry.Types
. . .

isOverlappingFunction :: FuncDecl → Bool
isOverlappingFunction (Func _ _ _ _ (Rule _ e)) = orInExpr e

6

isOverlappingFunction (Func f _ _ _ (External _)) = f == ("Prelude","?")

-- Check an expression for occurrences of Or:
orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ f es) = f == ("Prelude","?") || any orInExpr es
orInExpr (Free _ e) = orInExpr e
orInExpr (Let bs e) = any orInExpr (map snd bs) || orInExpr e
orInExpr (Or _ _) = True
orInExpr (Case _ e bs) = orInExpr e || any orInBranch bs
where orInBranch (Branch _ be) = orInExpr be

orInExpr (Typed e _) = orInExpr e

In order to support the inclusion of different kinds of analyses in CASS, CASS offers several con-
structor operations for the abstract type “Analysis a” (which is defined in module Analysis.Types).
Each analysis has a name provided as a first argument to these constructors. The name is used to
store the analysis information persistently and to pass specific analysis tasks to analysis workers.
For instance, a simple function analysis which depends only on a given function definition can be
defined by the analysis constructor

simpleFuncAnalysis :: String → (FuncDecl → a) → Analysis a

The arguments are the analysis name and the actual analysis function. Hence, the “overlapping
rules” analysis can be specified as

import Analysis.Types
. . .

overlapAnalysis :: Analysis Bool
overlapAnalysis = simpleFuncAnalysis "Overlapping" isOverlappingFunction

In order to integrate this analysis into CASS, we also have to define an operation to show the
analysis results in a human-readable form:

showOverlap :: AOutFormat → Bool → String
showOverlap _ True = "overlapping"
showOverlap AText False = "non-overlapping"
showOverlap ANote False = ""

Here, the typical case of non-overlapping rules is not printed in case of short notes.
Now we have all elements available in order to add this analysis to CASS. To support this easily,

there is an operation

cassAnalysis :: (Read a, Show a, Eq a)
=> String → Analysis a → (AOutFormat → a → String)
→ RegisteredAnalysis

to transform an analysis with some title, an analysis operation, and a “show” operation into an
analysis ready to be registered in CASS. The actually registered analyses are specified by the
constant

registeredAnalysis :: [RegisteredAnalysis]

7

defined in module CASS.Registry. Hence, the Overlapping can be integrated into CASS by adding
it to the definition of registeredAnalysis, e.g.,

registeredAnalysis :: [RegisteredAnalysis]
registeredAnalysis =

[
...
cassAnalysis "Overlapping rules" overlapAnalysis showOverlap
...
]

As a final step, we have to compile and install this extended version of CASS by executing

> cypm install

in the downloaded package. After this step, one can executed

> cass --help

to check whether the Overlapping analysis occurs in the list of registered analyses names.
To show an example of a more complex kind of analysis, we consider a determinism analysis.

Such an analysis could be based on an abstract domain described by the data type

data Deterministic = NDet | Det
deriving (Eq, Read, Show)

Here, Det is interpreted as “the operation always evaluates in a deterministic manner on ground
constructor terms.” However, NDet is interpreted as “the operation might evaluate in different ways
for given ground constructor terms.” The apparent imprecision is due to the approximation of the
analysis. For instance, if the function f is defined by overlapping rules and the function g might
call f, then g is judged as non-deterministic (since it is generally undecidable whether f is actually
called by g in some run of the program).

The determinism analysis requires to examine the current function as well as all directly or
indirectly called functions for overlapping rules. Due to recursive function definitions, this analysis
cannot be done in one shot for a given function—it requires a fixpoint computation. CASS provides
such fixpoint computations and simplifies its implementation by requiring only the implementation
of an operation of type

FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argument of type [(QName,a)] represents
the currently known analysis values for the functions directly used in this function declaration.
Hence, in the implementation one can assume that the analysis results of all functions occurring in
the definition of the function to be analyzed are already known, although they will be approximated
by a fixpoint computation performed by CASS. Technically, the abstract values must be a domain
with some bottom element and the analysis operation must be monotone. Since this is not checked
by CASS, we omit these details.

In our example, the determinism analysis can be implemented by the following operation:

detFunc :: FuncDecl → [(QName,Deterministic)] → Deterministic

8

detFunc (Func f _ _ _ (External _)) _ = f == ("Prelude","?")
detFunc (Func f _ _ _ (Rule _ e)) calledFuncs =

if orInExpr e || freeVarInExpr e || any (==NDet) (map snd calledFuncs)
then NDet
else Det

Thus, it computes the abstract value NDet if the function itself is defined by overlapping rules
or contains free variables that might cause non-deterministic guessing (we omit the definition of
freeVarInExpr since it is quite similar to orInExpr), or if it depends on some non-deterministic
function.

To support the integration of such fixpoint analyses in CASS, there exists the following analysis
constructor:

dependencyFuncAnalysis :: String → a → (FuncDecl → [(QName,a)] → a)
→ Analysis a

Here, the second argument specifies the start value of the fixpoint analysis, i.e., the bottom element
of the abstract domain. Hence, the complete determinism analysis can be specified as

detAnalysis :: Analysis Deterministic
detAnalysis = dependencyFuncAnalysis "Deterministic" Det detFunc

In order to register this analysis, we define a show function

showDet :: AOutFormat → Deterministic → String
showDet _ NDet = "non-deterministic"
showDet AText Det = "deterministic"
showDet ANote Det = ""

extend the definiton of registeredAnalysis by the line

cassAnalysis "Deterministic operations" detAnalysis showDet

and compile and install the package.
This simple definition is sufficient to execute this analysis with CASS, since the analysis system

takes care of computing fixpoints, calling the analysis functions with appropriate values, analyzing
imported modules, caching analysis results, etc. The actual analysis time depends on the size of
modules and their imports, the size of the dependencies, and the number of fixpoint iterations (which
depends also on the depth of the abstract domain).2 Beyond the analysis time, it is also important
that the analysis terminates, which is not ensured in general fixpoint computations. Termination
can be achieved by using an abstract domain with finitely many values and defining the analysis
function so that it is monotone w.r.t. some ordering on the abstract values.

Required class instances. Note that the type of an abstract domain are required to have in-
stances of the type classes Eq, Read, Show, and ReadWrite, since abstract values need to be compared
(e.g., to check whether a fixpoint has been reached) and persistently stored (to support an incre-
mental modular analysis). Whereas instances of Eq, Read, and Show can be automatically derived

2CASS supports different methods to compute fixpoints, see the property fixpoint in the configuration file
.curryanalysisrc which is installed in the user’s home directory when CASS is started for the first time. This
property can also be set in the command to invoke CASS.

9

(via a deriving annotation as shown above), instances of ReadWrite (which support a compact
data representation) can be generated by the tool curry-rw-data. This tool is available as a Curry
package and can be installed by

> cypm install rw-data-generator

Then, ReadWrite instances of all data types defined in a module AnaMod can be generated by the
command

> curry-rw-data AnaMod

This command generates a new module AnaModRW containing the instance definitions which might
be inserted into the analysis implementation module AnaMod.

References

[1] M. Hanus and F. Skrlac. A modular and generic analysis server system for functional logic
programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation (PEPM’14), pages 181–188. ACM Press, 2014.

10

