1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
module CLP.FD
( FDConstr, FDExpr, FDRel(..), Option(..), fd
, allDifferent, domain, sum, scalarProduct, count
, (=#), (/=#), (<#), (<=#), (>#), (>=#)
, true, (/\), andC, allC
, solveFD, solveFDAll, solveFDOne
) where
import qualified CLPFD as C
import Control.Findall ( allValues, someValue )
infixl 7 *#
infixl 6 +#, -#
infix 4 =#, /=#, <#, <=#, >#, >=#
infixr 3 /\
domain :: Int -> Int -> [FDExpr]
domain min max = genFDVars min max
where
genFDVars :: Int -> Int -> [FDExpr]
genFDVars l u = FDVar l u _ : genFDVars l u
instance Num FDExpr where
x + y = x +# y
x - y = x -# y
x * y = x *# y
abs _ = error "abs undefined for FD constraints"
signum _ = error "signum undefined for FD constraints"
fromInt x = fd x
fd :: Int -> FDExpr
fd v = FDInt v
(+#) :: FDExpr -> FDExpr -> FDExpr
x +# y = FDBinExp Plus x y
(-#) :: FDExpr -> FDExpr -> FDExpr
x -# y = FDBinExp Minus x y
(*#) :: FDExpr -> FDExpr -> FDExpr
x *# y = FDBinExp Times x y
(=#) :: FDExpr -> FDExpr -> FDConstr
x =# y = FDRelCon Equ x y
(/=#) :: FDExpr -> FDExpr -> FDConstr
x /=# y = FDRelCon Neq x y
(<#) :: FDExpr -> FDExpr -> FDConstr
x <# y = FDRelCon Lt x y
(<=#) :: FDExpr -> FDExpr -> FDConstr
x <=# y = FDRelCon Leq x y
(>#) :: FDExpr -> FDExpr -> FDConstr
x ># y = FDRelCon Gt x y
(>=#) :: FDExpr -> FDExpr -> FDConstr
x >=# y = FDRelCon Geq x y
true :: FDConstr
true = FDTrue
(/\) :: FDConstr -> FDConstr -> FDConstr
c1 /\ c2 = FDAnd c1 c2
andC :: [FDConstr] -> FDConstr
andC = foldr (/\) true
allC :: (a -> FDConstr) -> [a] -> FDConstr
allC c = andC . map c
data FDRel = Equ | Neq | Lt | Leq | Gt | Geq
allDifferent :: [FDExpr] -> FDConstr
allDifferent vs = FDAllDiff vs
sum :: [FDExpr] -> FDRel -> FDExpr -> FDConstr
sum vs rel v = FDSum vs rel v
scalarProduct :: [FDExpr] -> [FDExpr] -> FDRel -> FDExpr -> FDConstr
scalarProduct cs vs rel v = FDScalar cs vs rel v
count :: FDExpr -> [FDExpr] -> FDRel -> FDExpr -> FDConstr
count v vs rel c = FDCount v vs rel c
data Option = LeftMost
| FirstFail
| FirstFailConstrained
| Min
| Max
| Step
| Enum
| Bisect
| Up
| Down
| All
| Minimize Int
| Maximize Int
| Assumptions Int
| RandomVariable Int
| RandomValue Int
instance Show Option where
show _ = error "TODO: Show CLP.FD.Option"
data FDExpr = FDVar Int Int Int
| FDInt Int
| FDBinExp FDOp FDExpr FDExpr
instance Show FDExpr where
show _ = error "TODO: Show CLP.FD.FDExpr"
data FDOp = Plus | Minus | Times
data FDConstr = FDTrue
| FDRelCon FDRel FDExpr FDExpr
| FDAnd FDConstr FDConstr
| FDAllDiff [FDExpr]
| FDSum [FDExpr] FDRel FDExpr
| FDScalar [FDExpr] [FDExpr] FDRel FDExpr
| FDCount FDExpr [FDExpr] FDRel FDExpr
solveFD :: [Option] -> [FDExpr] -> FDConstr -> [Int]
solveFD options cvars constr =
let domconstr = all fdvar2domain (cvars ++ allFDVars constr)
tconstr = trC constr
allvars = map getFDVal cvars
labelvars = C.labeling (map trO options) allvars
in (domconstr & tconstr & labelvars) &> allvars
where
fdvar2domain e = case e of
FDVar l u v -> C.domain [v] l u
_ -> True
solveFDAll :: [Option] -> [FDExpr] -> FDConstr -> [[Int]]
solveFDAll options cvars constr = allValues (solveFD options cvars constr)
solveFDOne :: [Option] -> [FDExpr] -> FDConstr -> [Int]
solveFDOne options cvars constr = someValue (solveFD options cvars constr)
getFDVal :: FDExpr -> Int
getFDVal var = case var of
FDVar _ _ v -> v
FDInt i -> i
FDBinExp fdop fde1 fde2 -> (arithOp fdop) (valOf fde1) (valOf fde2)
where
valOf e = case e of
FDInt i -> i
FDBinExp op e1 e2 -> (arithOp op) (valOf e1) (valOf e2)
_ -> error $ "FD variable or value expected but FD expression found:\n"++
show e
arithOp Plus = (+)
arithOp Minus = (-)
arithOp Times = (*)
allFDVars :: FDConstr -> [FDExpr]
allFDVars FDTrue = []
allFDVars (FDRelCon _ fde1 fde2) = allEFDVars fde1 ++ allEFDVars fde2
allFDVars (FDAnd c1 c2) = allFDVars c1 ++ allFDVars c2
allFDVars (FDAllDiff fdvars) = filterVars fdvars
allFDVars (FDSum fdvars _ fdv) = filterVars (fdvars ++ [fdv])
allFDVars (FDScalar cs fdvars _ fdv) = filterVars (cs ++ fdvars ++ [fdv])
allFDVars (FDCount fdv fdvars _ c) = filterVars (fdvars ++ [fdv,c])
filterVars :: [FDExpr] -> [FDExpr]
filterVars = concatMap allEFDVars
allEFDVars :: FDExpr -> [FDExpr]
allEFDVars e = case e of
FDVar _ _ _ -> [e]
FDInt _ -> []
FDBinExp _ e1 e2 -> allEFDVars e1 ++ allEFDVars e2
trC :: FDConstr -> Bool
trC FDTrue = True
trC (FDRelCon rel fde1 fde2) = (trFDRel rel) (trE fde1) (trE fde2)
trC (FDAnd fde1 fde2) = trC fde1 & trC fde2
trC (FDAllDiff fdvars) = C.allDifferent (map getFDVal fdvars)
trC (FDSum fdvars relop fdv) =
C.sum (map getFDVal fdvars)
(trFDRel relop)
(getFDVal fdv)
trC (FDScalar cs fdvars relop fdv) =
C.scalarProduct (map getFDVal cs) (map getFDVal fdvars) (trFDRel relop)
(getFDVal fdv)
trC (FDCount fdv fdvars relop c) =
C.count (getFDVal fdv) (map getFDVal fdvars) (trFDRel relop) (getFDVal c)
trE :: FDExpr -> Int
trE (FDVar _ _ v) = v
trE (FDInt i) = i
trE (FDBinExp rel fde1 fde2) = (trFDOp rel) (trE fde1) (trE fde2)
trFDRel :: FDRel -> Int -> Int -> Bool
trFDRel Equ = (C.=#)
trFDRel Neq = (C./=#)
trFDRel Lt = (C.<#)
trFDRel Leq = (C.<=#)
trFDRel Gt = (C.>#)
trFDRel Geq = (C.>=#)
trFDOp :: FDOp -> Int -> Int -> Int
trFDOp Plus = (C.+#)
trFDOp Minus = (C.-#)
trFDOp Times = (C.*#)
trO :: Option -> C.LabelingOption
trO option = case option of
LeftMost -> C.LeftMost
FirstFail -> C.FirstFail
FirstFailConstrained -> C.FirstFailConstrained
Min -> C.Min
Max -> C.Max
Step -> C.Step
Enum -> C.Enum
Bisect -> C.Bisect
Up -> C.Up
Down -> C.Down
All -> C.All
Minimize n -> C.Minimize n
Maximize n -> C.Maximize n
Assumptions n -> C.Assumptions n
RandomVariable n -> C.RandomVariable n
RandomValue n -> C.RandomValue n
|