1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
--------------------------------------------------------------------------
--- Operations to implement the client workers.
--- In particular, it contains some simple fixpoint computations.
---
--- @author Heiko Hoffmann, Michael Hanus
--- @version January 2021
--------------------------------------------------------------------------

module CASS.WorkerFunctions where

import Data.IORef
import Data.List         ( partition )
import System.CPUTime    ( getCPUTime )

import Analysis.Files
import Analysis.Logging  ( debugMessage, debugString )
import Analysis.Types    ( Analysis(..), isSimpleAnalysis, isCombinedAnalysis
                         , analysisName, startValue)
import Analysis.ProgInfo ( ProgInfo, combineProgInfo, emptyProgInfo
                         , publicProgInfo, lookupProgInfo, lists2ProgInfo
                         , equalProgInfo, publicListFromProgInfo, showProgInfo )
import Data.Map as Map
import FlatCurry.Types
import FlatCurry.Goodies
import Data.SCC          ( scc )
import Data.Set.RBTree as Set ( SetRBT, member, empty, insert, null )

import CASS.Configuration
import CASS.FlatCurryDependency ( callsDirectly, dependsDirectlyOnTypes )

-----------------------------------------------------------------------
-- Datatype to store already read ProgInfos for modules.

type ProgInfoStore a = [(String,ProgInfo a)]

newProgInfoStoreRef :: IO (IORef (ProgInfoStore _))
newProgInfoStoreRef = newIORef []

-----------------------------------------------------------------------
--- Analyze a list of modules (in the given order) with a given analysis.
--- The analysis results are stored in the corresponding analysis result files.
analysisClient :: (Eq a, Show a, Read a) => Analysis a -> [String] -> IO ()
analysisClient analysis modnames = do
  store <- newIORef []
  fpmethod <- getFPMethod
  mapM_ (analysisClientWithStore store analysis fpmethod) modnames

analysisClientWithStore :: (Eq a, Show a, Read a)
                        => IORef (ProgInfoStore a) -> Analysis a -> String
                        -> String -> IO ()
analysisClientWithStore store analysis fpmethod moduleName = do
  prog        <- readNewestFlatCurry moduleName
  withprelude <- getWithPrelude
  let progimports = progImports prog
      importList  = if withprelude=="no" then filter (/="Prelude") progimports
                                         else progimports
      ananame     = analysisName analysis
  importInfos <-
    if isSimpleAnalysis analysis
    then return emptyProgInfo
    else getInterfaceInfosWS store (analysisName analysis) importList
  debugString 1 $ "Analysis time for " ++ ananame ++ "/" ++ moduleName ++ ": "
  starttime <- getCPUTime
  startvals <- getStartValues analysis prog
  result <-
     if isCombinedAnalysis analysis
     then execCombinedAnalysis analysis prog importInfos
                                startvals moduleName fpmethod
     else runAnalysis analysis prog importInfos startvals fpmethod
  storeAnalysisResult ananame moduleName result
  stoptime <- getCPUTime
  debugMessage 1 $ show (stoptime-starttime) ++ " msecs"
  loadinfos <- readIORef store
  writeIORef store ((moduleName,publicProgInfo result):loadinfos)


-- Loads analysis results for a list of modules where already read results
-- are stored in an IORef.
getInterfaceInfosWS :: Read a => IORef (ProgInfoStore a) -> String -> [String]
                    -> IO (ProgInfo a)
getInterfaceInfosWS _ _ [] = return emptyProgInfo
getInterfaceInfosWS store anaName (mod:mods) = do
  loadinfos <- readIORef store
  modInfo <- maybe (loadAndStoreAnalysis loadinfos) return
                   (Prelude.lookup mod loadinfos)
  modsInfo <- getInterfaceInfosWS store anaName mods
  return (combineProgInfo modInfo modsInfo)
 where
  loadAndStoreAnalysis loadinfos = do
    info <- loadPublicAnalysis anaName mod
    writeIORef store ((mod,info):loadinfos)
    return info


-----------------------------------------------------------------------

--- Compute the start (bottom) values for a dependency analysis.
getStartValues :: Analysis a -> Prog -> IO [(QName,a)]
getStartValues analysis prog =
  if isSimpleAnalysis analysis
  then return []
  else do
    let startvals = case analysis of
          DependencyFuncAnalysis _ _ _ ->
            map (\func->(funcName func,startValue analysis))
                (progFuncs prog)
          CombinedDependencyFuncAnalysis _ _ _ _ _ ->
            map (\func->(funcName func,startValue analysis))
                (progFuncs prog)
          DependencyTypeAnalysis _ _ _ ->
            map (\typeDecl->(typeName typeDecl,startValue analysis))
                (progTypes prog)
          CombinedDependencyTypeAnalysis _ _ _ _ _ ->
            map (\typeDecl->(typeName typeDecl,startValue analysis))
                (progTypes prog)
          _ -> error "Internal error in WorkerFunctions.getStartValues"
    return startvals

--- Compute a ProgInfo from a given list of infos for each function name w.r.t.
--- a given program.
funcInfos2ProgInfo :: Prog -> [(QName,a)] -> ProgInfo a
funcInfos2ProgInfo prog infos = lists2ProgInfo $
   map2 (\fdecl -> let fname = funcName fdecl
                   in (fname, maybe (lookupError "funcInfos2ProgInfo" fname) id
                                    (Prelude.lookup fname infos)))
        (partition isVisibleFunc (progFuncs prog))

--- Compute a ProgInfo from a given list of infos for each type name w.r.t.
--- a given program.
typeInfos2ProgInfo :: Prog -> [(QName,a)] -> ProgInfo a
typeInfos2ProgInfo prog infos = lists2ProgInfo $
   map2 (\tdecl -> let tname = typeName tdecl
                   in (tname, maybe (lookupError "typeInfos2ProgInfo" tname) id
                                    (Prelude.lookup tname infos)))
        (partition isVisibleType (progTypes prog))

map2 :: (a -> b) -> ([a], [a]) -> ([b], [b])
map2 f (xs,ys) = (map f xs, map f ys)

--- Update a given value list (second argument) w.r.t. new values given
--- in the first argument list.
updateList :: Eq a => [(a,b)] -> [(a,b)] -> [(a,b)]
updateList [] oldList = oldList
updateList ((key,newValue):newList) oldList =
  updateList newList (updateValue (key,newValue) oldList)

updateValue :: Eq a => (a,b) -> [(a,b)] -> [(a,b)]
updateValue _ [] = []
updateValue (key1,newValue) ((key2,value2):list) =
  if key1==key2 then (key1,newValue):list
                else (key2,value2):(updateValue (key1,newValue) list)

-----------------------------------------------------------------------
execCombinedAnalysis :: Eq a => Analysis a -> Prog -> ProgInfo a -> [(QName,a)]
                     -> String -> String -> IO (ProgInfo a)
execCombinedAnalysis analysis prog importInfos startvals moduleName fpmethod =
 case analysis of
  CombinedSimpleFuncAnalysis _ ananame _ runWithBaseAna -> do
    anaFunc <- runWithBaseAna moduleName
    runAnalysis (SimpleFuncAnalysis ananame anaFunc)
                prog importInfos startvals fpmethod
  CombinedSimpleTypeAnalysis _ ananame _ runWithBaseAna -> do
    anaFunc <- runWithBaseAna moduleName
    runAnalysis (SimpleTypeAnalysis ananame anaFunc)
                prog importInfos startvals fpmethod
  CombinedDependencyFuncAnalysis _ ananame _ startval runWithBaseAna -> do
    anaFunc <- runWithBaseAna moduleName
    runAnalysis (DependencyFuncAnalysis ananame startval anaFunc)
                prog importInfos startvals fpmethod
  CombinedDependencyTypeAnalysis _ ananame _ startval runWithBaseAna -> do
    anaFunc <- runWithBaseAna moduleName
    runAnalysis (DependencyTypeAnalysis ananame startval anaFunc)
                prog importInfos startvals fpmethod
  _ -> error "Internal error in WorkerFunctions.execCombinedAnalysis"

-----------------------------------------------------------------------
--- Run an analysis but load default values (e.g., for external operations)
--- before and do not analyse the operations or types for these defaults.
runAnalysis :: Eq a => Analysis a -> Prog -> ProgInfo a -> [(QName,a)] -> String
            -> IO (ProgInfo a)
runAnalysis analysis prog importInfos startvals fpmethod = do
  deflts <- loadDefaultAnalysisValues (analysisName analysis) (progName prog)
  let defaultFuncs =
        updProgFuncs (filter (\fd -> funcName fd `elem`    map fst deflts)) prog
      definedFuncs =
        updProgFuncs (filter (\fd -> funcName fd `notElem` map fst deflts)) prog
      defaultTypes =
        updProgTypes (filter (\fd -> typeName fd `elem`    map fst deflts)) prog
      definedTypes =
        updProgTypes (filter (\fd -> typeName fd `notElem` map fst deflts)) prog
  let (progWithoutDefaults,defaultproginfo) = case analysis of
        SimpleFuncAnalysis _ _ ->
         (definedFuncs, funcInfos2ProgInfo defaultFuncs deflts)
        SimpleTypeAnalysis _ _ ->
         (definedTypes, typeInfos2ProgInfo defaultTypes deflts)
        SimpleConstructorAnalysis _ _ -> -- there are no external constructors
         if Prelude.null deflts then (prog,emptyProgInfo)
         else error "SimpleConstructorAnalysis with default values!"
        DependencyFuncAnalysis _ _ _ ->
         (definedFuncs, funcInfos2ProgInfo defaultFuncs deflts)
        DependencyTypeAnalysis _ _ _ ->
         (definedTypes, typeInfos2ProgInfo defaultTypes deflts)
        SimpleModuleAnalysis _ _ ->
         if Prelude.null deflts then (definedFuncs, emptyProgInfo)
                        else error defaultNotEmptyError
        DependencyModuleAnalysis _ _ ->
         if Prelude.null deflts then (definedFuncs, emptyProgInfo)
                        else error defaultNotEmptyError
        _ -> error "Internal error in WorkerFunctions.runAnalysis"
  let result = executeAnalysis analysis progWithoutDefaults
                               (combineProgInfo importInfos defaultproginfo)
                               startvals fpmethod
  return $ combineProgInfo defaultproginfo result
 where
  defaultNotEmptyError = "Default analysis information for analysis '" ++
                         analysisName analysis ++ "' and module '" ++
                         progName prog ++ "' not empty!"

--- Executes an anlysis on a given program w.r.t. an imported ProgInfo
--- and some start values (for dependency analysis).
--- The fixpoint iteration method to be applied is passed as the last argument.
executeAnalysis :: Eq a => Analysis a -> Prog -> ProgInfo a -> [(QName,a)]
                -> String
                -> ProgInfo a

-- The results of a module analysis for module `m` are encoded as
-- a `ProgInfo` with a single entry for the qualified name `m.m`.
executeAnalysis (SimpleModuleAnalysis _ anaFunc) prog _ _ _ =
 let pname = progName prog
 in lists2ProgInfo ([((pname,pname), anaFunc prog)], [])
executeAnalysis (DependencyModuleAnalysis _ anaFunc) prog impproginfos _ _ =
 let pname       = progName prog
     importinfos = map (\ (qn,a) -> (fst qn,a))
                       (publicListFromProgInfo impproginfos)
 in lists2ProgInfo ([((pname,pname), anaFunc prog importinfos)], [])

executeAnalysis (SimpleFuncAnalysis _ anaFunc) prog _ _ _ =
  (lists2ProgInfo . map2 (\func -> (funcName func, anaFunc func))
                  . partition isVisibleFunc . progFuncs) prog

executeAnalysis (SimpleTypeAnalysis _ anaFunc) prog _ _ _ =
  (lists2ProgInfo . map2 (\typ -> (typeName typ,anaFunc typ))
                  . partition isVisibleType . progTypes) prog

executeAnalysis (SimpleConstructorAnalysis _ anaFunc) prog _ _ _ =
  (lists2ProgInfo
    . map2 (\ (cdecl,tdecl) -> (consName cdecl, anaFunc cdecl tdecl))
    . partition isVisibleCons
    . concatMap (\t -> map (\c -> (c,t)) (consDeclsOfType t))
    . progTypes) prog
 where
  isVisibleCons (consDecl,_) = consVisibility consDecl == Public

executeAnalysis (DependencyFuncAnalysis _ _ anaFunc) prog
                importInfos startvals fpmethod = case fpmethod of
  "simple" ->
    let declsWithDeps = map2 addCalledFunctions
                             (partition isVisibleFunc (progFuncs prog))
        startinfo = funcInfos2ProgInfo prog startvals
     in simpleIteration anaFunc funcName declsWithDeps importInfos startinfo
  "wlist" ->
    let declsWithDeps = map addCalledFunctions (progFuncs prog)
     in funcInfos2ProgInfo prog $ toList $
          wlIteration anaFunc funcName declsWithDeps [] (Set.empty (<))
                      importInfos (fromList startvals)
  "wlistscc" ->
    let declsWithDeps = map addCalledFunctions (progFuncs prog)
        -- compute strongly connected components w.r.t. func dependencies:
        sccDecls = scc ((:[]) . funcName . fst) snd declsWithDeps
     in funcInfos2ProgInfo prog $ toList $
          foldr (\scc sccstartvals ->
                   wlIteration anaFunc funcName scc [] (Set.empty (<))
                               importInfos sccstartvals)
                (fromList startvals)
                (reverse sccDecls)
  _ -> error unknownFixpointMessage

executeAnalysis (DependencyTypeAnalysis _ _ anaType) prog
                importInfos startvals fpmethod = case fpmethod of
  "simple" ->
    let declsWithDeps = map2 addUsedTypes
                             (partition isVisibleType (progTypes prog))
        startinfo = typeInfos2ProgInfo prog startvals
     in simpleIteration anaType typeName declsWithDeps importInfos startinfo
  "wlist" ->
    let declsWithDeps = map addUsedTypes (progTypes prog)
     in typeInfos2ProgInfo prog $ toList $
          wlIteration anaType typeName declsWithDeps [] (Set.empty (<))
                      importInfos (fromList startvals)
  "wlistscc" ->
    let declsWithDeps = map addUsedTypes (progTypes prog)
        -- compute strongly connected components w.r.t. type dependencies:
        sccDecls = scc ((:[]) . typeName . fst) snd declsWithDeps
     in typeInfos2ProgInfo prog $ toList $
          foldr (\scc sccstartvals ->
                   wlIteration anaType typeName scc [] (Set.empty (<))
                               importInfos sccstartvals)
                (fromList startvals)
                (reverse sccDecls)
  _ -> error unknownFixpointMessage
-- These cases are handled elsewhere:
executeAnalysis (CombinedSimpleFuncAnalysis _ _ _ _) _ _ _ _ =
  error "Internal error in WorkerFunctions.executeAnalysis"
executeAnalysis (CombinedSimpleTypeAnalysis _ _ _ _) _ _ _ _ =
  error "Internal error in WorkerFunctions.executeAnalysis"
executeAnalysis (CombinedDependencyFuncAnalysis _ _ _ _ _) _ _ _ _ =
  error "Internal error in WorkerFunctions.executeAnalysis"
executeAnalysis (CombinedDependencyTypeAnalysis _ _ _ _ _) _ _ _ _ =
  error "Internal error in WorkerFunctions.executeAnalysis"

unknownFixpointMessage :: String
unknownFixpointMessage = "Unknown value for 'fixpoint' in configuration file!"

--- Add the directly called functions to each function declaration.
addCalledFunctions :: FuncDecl -> (FuncDecl,[QName])
addCalledFunctions func = (func, callsDirectly func)

--- Add the directly used type constructors to each type declaration.
addUsedTypes :: TypeDecl -> (TypeDecl,[QName])
addUsedTypes tdecl = (tdecl, dependsDirectlyOnTypes tdecl)

--- Gets all constructors of datatype declaration.
consDeclsOfType :: TypeDecl -> [ConsDecl]
consDeclsOfType (Type _ _ _ consDecls)              = consDecls
consDeclsOfType (TypeSyn _ _ _ _)                   = []
consDeclsOfType (TypeNew _ _ _ (NewCons qn vis te)) = [Cons qn 1 vis [te]]

-----------------------------------------------------------------------
--- Fixpoint iteration to compute analysis information. The arguments are:
--- * analysis operation
--- * operation to get name of a declaration
--- * list of public and private declarations together with their direct deps
--- * ProgInfo for imported entities
--- * current ProgInfo
--- Result: fixpoint ProgInfo
simpleIteration :: Eq a => (t -> [(QName,a)] -> a) -> (t -> QName)
                -> ([(t,[QName])],[(t,[QName])])
                -> ProgInfo a -> ProgInfo a -> ProgInfo a
simpleIteration analysis nameOf declsWithDeps importInfos currvals =
  let completeProgInfo = combineProgInfo currvals importInfos

      newvals =
        map2 (\ (decl,calls) ->
               (nameOf decl,
                analysis decl
                  (map (\qn -> (qn,maybe (lookupError "simpleIteration" qn) id
                                         -- information must known!
                                         (lookupProgInfo qn completeProgInfo)))
                        calls)))
             declsWithDeps

      newproginfo = lists2ProgInfo newvals

  in if equalProgInfo currvals newproginfo
     then currvals
     else simpleIteration analysis nameOf declsWithDeps importInfos newproginfo

wlIteration :: (Eq a, Eq b) => (a -> [(QName,b)] -> b) -> (a -> QName)
            -> [(a,[QName])] -> [(a,[QName])] -> SetRBT QName
            -> ProgInfo b -> Map QName b -> Map QName b
--wlIteration analysis nameOf declsToDo declsDone changedEntities
--            importInfos currvals

wlIteration analysis nameOf [] alldecls changedEntities importInfos currvals =
  if Set.null changedEntities
  then currvals -- no todos, no changed values, so we are done:
  else -- all declarations processed, compute todos for next round:
       let (declsToDo,declsDone) =
              partition (\ (_,calls) -> any (`Set.member` changedEntities) calls)
                        alldecls
        in wlIteration analysis nameOf declsToDo declsDone (Set.empty (<))
                       importInfos currvals
-- process a single declaration:
wlIteration analysis nameOf (decldeps@(decl,calls):decls) declsDone
            changedEntities importInfos currvals =
  let decname = nameOf decl

      lookupVal qn = maybe (maybe (lookupError "wlIteration" qn) id
                                  (Map.lookup qn currvals)) id
                           (lookupProgInfo qn importInfos)
      oldval = lookupVal decname
      newval = analysis decl (map (\qn -> (qn, lookupVal qn)) calls)
   in if oldval==newval
      then wlIteration analysis nameOf decls (decldeps:declsDone)
                       changedEntities importInfos currvals
      else wlIteration analysis nameOf decls (decldeps:declsDone)
                       (Set.insert decname changedEntities) importInfos
                       (Map.adjust (const newval) decname currvals)

lookupError :: String -> QName -> _
lookupError s qn =
  error $ "Internal error in CASS." ++ s ++ ": " ++
          showQName qn ++ " not found."

---------------------------------------------------------------------
-- Auxiliaries

isVisibleFunc :: FuncDecl -> Bool
isVisibleFunc funcDecl = funcVisibility funcDecl == Public

isVisibleType :: TypeDecl -> Bool
isVisibleType typeDecl = typeVisibility typeDecl == Public

---------------------------------------------------------------------