
1 CurryDoc: A Documentation Generator for Curry Programs

CurryDoc is a tool to generate the documentation for a Curry program (i.e., the main module and

all its imported modules) in HTML format. It can also be used with the Curry Package Manager

CPM (see below) to generate the documentation of a Curry package. The generated HTML pages

contain information about all data types, type classes and operations exported by a module as well

as links between the di�erent entities. Furthermore, some information about the de�nitional status

of operations (like rigid, �exible, external, complete, or overlapping de�nitions) are provided and

combined with documentation comments provided by the programmer.

1.1 Installation

The implementation of CurryDoc is contained in a package managed by the Curry Package Manager

CPM. Thus, to install the newest version of CurryDoc, use the following commands:

> cypm update

> cypm install currydoc

This downloads the newest package, compiles it, and places the executable curry-doc into the

directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to

execute CurryDoc as described below.

1.2 Documentation Comments

The documentation syntax follows Haddock (see https://www.haskell.org/haddock/doc/html/

index.html).1

A documentation comment starts with �-- | � or �-- ^� (also in literate programs!).2 The

former style can be used to write document comments preceding a declaration and the latter for

comments following a declaration. Nested comments are also supported with �{- | � or �{- ^�

Other comments are also considered as documentation comments, if they are on a line directly

below another documentation comment.

The documentation comments for the complete module occur before the �rst �module� or �im-

port� line in the module. The module comments can also contain several special tags. These tags

must be the �rst thing on its line (in the documentation comment) and continues until a line has

at most the same degree of indentation or until the end of the comment. No tag must occur in the

module comments, but any occurring tag as to be in the speci�ed order. The following tags are

recognized:

Description: comment

Speci�es a short description of a module

Category: comment

Speci�es the category of a module

1Note that older versions of CurryDoc (< 5.0.0) use a slightly di�erent syntax which is still supported but should

not be used.
2�--- � can be used instead of �-- | � for backwards compatibility

1

Author: comment

Speci�es the author of a module

Version: comment

Speci�es the version of a module

All text following the tags can be used for a longer module description.

The ordering of the �nal documentation can be controlled via the export list in the module

header. The user can insert section headings via comments of the form �-- *� or �{- * �. The

number of �*� controls if it is a subsection, subsubsection, etc.

The comment of a documented entity can be any string in Markdown syntax 3. The cur-

rently supported set of elements is described in the Curry package markdown.4 For instance, it

can contain Markdown annotations for emphasizing elements (e.g., _verb_), strong elements (e.g.,

important), code elements (e.g., `3+4`), code blocks (lines pre�xed by four blanks), un-

ordered lists (lines pre�xed by � * �), ordered lists (lines pre�xed by blanks followed by a digit

and a dot), quotations (lines pre�xed by �> �), and web links of the form �<http://...>� or

�[link text](http://...)�. If the Markdown syntax should not be used, one could run Curry-

Doc with the option �--nomarkdown�.

The comments cannot contain markups in HTML format anymore, due to the possibility of XSS-

Attacks. In addition to Markdown, one can also mark references to names of operations or data

types in Curry programs which are translated into links inside the generated HTML documentation.

Such references have to be enclosed in single quotes. For instance, the text 'conc' refers to the

Curry operation conc inside the current module whereas the text 'Prelude.reverse' refers to the

operation reverse of the module Prelude. If one wants to write single quotes without this speci�c

meaning, one can escape them with a backslash:

-- | This is a comment without a \'reference\'.

To simplify the writing of documentation comments, such escaping is only necessary for single words,

i.e., if the text inside quotes has not the syntax of an identi�er, the escaping can be omitted, as in

-- | This isn't a reference.

The following example text shows a Curry program with some documentation comments:

{- |

Description: A simple example for CurryDoc

Author : Michael Hanus

Version : 0.1

This is an

example module.

-}

module Example (

-- * Tree type

Tree(..),

-- * Operations on lists

3http://en.wikipedia.org/wiki/Markdown
4https://cpm.curry-lang.org/pkgs/markdown.html

2

last,

-- ** Operations repeated from the prelude

conc

) where

-- | The function `conc` concatenates two lists.

-- It is identical to the function 'Prelude.++'.

conc :: [a] -- ^ The first list

→ [a] -- ^ The second list

→ [a] -- ^ A list containing all elements of the parameters

conc (x:xs) ys = x : conc xs ys

conc [] ys = ys

-- ^ This comment will also be included in the documentation

-- | The function `last` computes the last element of a given list.

-- It is based on the operation 'conc' to concatenate two lists.

last :: Data a

=> [a] -- ^ The given input list

→ a -- ^ The last element of the input list

last xs | conc ys [x] =:= xs = x where x,ys free

-- | This data type defines _polymorphic_ trees.

data Tree a = Leaf a -- ^ A leaf of the tree

| Node [Tree a] -- ^ An inner node of the tree

1.3 Generating Documentation for Curry Modules

To generate the documentation of the module Example shown above, execute the command

curry-doc Example

This command creates the directory DOC Example (if it does not exist) and puts all HTML docu-

mentation �les for the main program module Example and all its imported modules in this directory

together with a main index �le index.html. If one prefers another directory for the documentation

�les, one can also execute the command

curry-doc docdir Example

where docdir is the directory for the documentation �les.

In order to generate the common documentation for large collections of Curry modules (e.g., the

libraries contained in the Curry distribution), one can call curry-doc with the following options:

curry-doc --noindexhtml docdir Mod

This command generates the documentation for module Mod in the directory docdir without

the index pages (i.e., main index page and index pages for all functions and constructors

de�ned in Mod and its imported modules).

curry-doc --onlyindexhtml docdir Mod1 Mod2 ...Modn

This command generates only the index pages (i.e., a main index page and index pages for

3

all functions and constructors de�ned in the modules Mod1, Mod2,. . . ,Modn and their imported

modules) in the directory docdir.

1.4 Generating Documentation for Curry Packages

CurryDoc is also used by the Curry Package Manager CPM to generate the documentation of a

Curry package. Inside a Curry package, one can execute the command

> cypm doc

to generate the documentation of all modules exported by this package. A detailed description of

this command and its options can be found in the manual of CPM.

References

[1] M. Hanus. CurryDoc: A Documentation Tool for Declarative Programs. In Proc. of the 11th

International Workshop on Functional and (Constraint) Logic Programming (WFLP 2002),

pages 225-228. Research Report UDMI/18/2002/RR, University of Udine, 2002.

4

