1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
------------------------------------------------------------------------------ --- Library with functional logic parser combinators. --- --- Adapted from: Rafael Caballero and Francisco J. Lopez-Fraguas: --- A Functional Logic Perspective of Parsing. --- In Proc. FLOPS'99, Springer LNCS 1722, pp. 85-99, 1999 --- --- @author Michael Hanus --- @version December 2012 --- @category general ------------------------------------------------------------------------------ module Parser where -- Operator declarations for the parser combinators: infixr 4 <*> infixr 3 >>> infixr 2 <|>, <||> -- We distinguish two kind of parsers: -- A parser without a representation has type "[token] -> [token]": -- it parses a list of tokens and returns the remaining unparsed tokens type Parser token = [token] -> [token] -- A parser with representation has type "rep -> [token] -> [token]": -- in addition to the input tokens, it has the representation as an argument -- (which is usually a free variable bound to the representation after parsing) type ParserRep rep token = rep -> Parser token -- Now we can define the basic combinators for parsers: --- Combines two parsers without representation in an alternative manner. (<|>) :: Parser t -> Parser t -> Parser t p <|> q = \sentence -> p sentence ? q sentence --- Combines two parsers with representation in an alternative manner. (<||>) :: ParserRep r t -> ParserRep r t -> ParserRep r t p <||> q = \rep -> p rep <|> q rep --- Combines two parsers (with or without representation) in a --- sequential manner. (<*>) :: Parser t -> Parser t -> Parser t p1 <*> p2 = seq where seq sentence | p1 sentence =:= sent1 = p2 sent1 where sent1 free --- Attaches a representation to a parser without representation. (>>>) :: Parser token -> rep -> ParserRep rep token parser >>> repexp = attach where attach rep sentence | parser sentence =:= rest &> repexp =:= rep = rest where rest free -- Finally, we define some useful basic parsers and derived combinators: --- The empty parser which recognizes the empty word. empty :: Parser _ empty sentence = sentence --- A parser recognizing a particular terminal symbol. terminal :: token -> Parser token terminal sym (token:tokens) | sym=:=token = tokens --- A parser (with representation) recognizing a terminal satisfying --- a given predicate. satisfy :: (token->Bool) -> ParserRep token token satisfy pred sym (token:tokens) | pred token =:= True & sym=:=token = tokens --- A star combinator for parsers. The returned parser --- repeats zero or more times a parser p with representation and --- returns the representation of all parsers in a list. star :: ParserRep rep token -> ParserRep [rep] token star p = p x <*> (star p) xs >>> (x:xs) <||> empty >>> [] where x,xs free --- A some combinator for parsers. The returned parser --- repeats the argument parser (with representation) at least once. some :: ParserRep rep token -> ParserRep [rep] token some p = p x <*> (star p) xs >>> (x:xs) where x,xs free {----------------------------------------------------------------------- As a simple example we define a parser for arithmetic expressions over natural numbers. The presentation of this parser is the value of the expression. expression = term t <*> plus_minus op <*> expression e >>> (op t e) <||> term where op,t,e free term = factor f <*> prod_div op <*> term t >>> (op f t) <||> factor where op,f,t free factor = terminal '(' <*> expression e <*> terminal ')' >>> e <||> num where e free plus_minus = terminal '+' >>> (+) <||> terminal '-' >>> (-) prod_div = terminal '*' >>> (*) <||> terminal '/' >>> div num = some digit l >>> numeric_value l where l free numeric_value ds = foldl1 ((+).(10*)) (map (\c->ord c - ord '0') ds) digit = satisfy isDigit -- example application: expression val "(10+5*2)/4" =:= [] -----------------------------------------------------------------------} |