1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
-----------------------------------------------------------------------------
--- Some goodies to deal with type-annotated FlatCurry programs.
---
--- @author  Michael Hanus
--- @version August 2020
---------------------------------------------------------------------------

module FlatCurry.Typed.Goodies where

import List         ( maximum, nub, union )

-- Imports from dependencies:
import Data.FiniteMap
import FlatCurry.Annotated.Goodies
import FlatCurry.Annotated.Pretty    ( ppExp )
import FlatCurry.Annotated.TypeSubst
import Text.Pretty                   ( showWidth )

import FlatCurry.Typed.Types

----------------------------------------------------------------------------
--- Returns the union of two typed FlatCurry programs.
unionTAProg :: TAProg -> TAProg -> TAProg
unionTAProg (AProg name imps1 types1 funcs1 ops1)
            (AProg _    imps2 types2 funcs2 ops2) =
  AProg name (filter (/=name) (union imps1 imps2))
        (types1++types2) (funcs1++funcs2) (ops1++ops2)

--- Returns the names of all functions/constructors occurring in the
--- body of a function declaration.
funcsOfFuncDecl :: TAFuncDecl -> [QName]
funcsOfFuncDecl fd =
  nub (trRule (\_ _ e -> funcsOfExp e) (\_ _ -> []) (funcRule fd))
 where
  funcsOfExp = trExpr (\_ _ -> [])
                      (\_ _ -> [])
                      (\_ _ (qn,_) fs -> qn : concat fs)
                      (\_ bs fs -> concatMap snd bs ++ fs)
                      (\_ _ -> id)
                      (\_ -> (++))
                      (\_ _ fs fss -> concat (fs:fss))
                      (\_ -> id)
                      (\_ fs _ -> fs)

--- Returns `True` if the expression is non-deterministic,
--- i.e., if `Or` or `Free` occurs in the expression.
ndExpr :: TAExpr -> Bool
ndExpr = trExpr (\_ _ -> False)
                (\_ _ -> False)
                (\_ _ _ nds -> or nds)
                (\_ bs nd -> nd || any snd bs)
                (\_ _ _ -> True)
                (\_ _ _ -> True)
                (\_ _ nd bs -> nd || or bs)
                (\_ -> id)
                (\_ nd _ -> nd)

--- Pretty prints an expression.
ppTAExpr :: TAExpr -> String
ppTAExpr e = showWidth 200 (ppExp e)

--- Sets the top annotation of a pattern.
setAnnPattern :: TypeExpr -> TAPattern -> TAPattern
setAnnPattern ann (ALPattern _ lit) = ALPattern ann lit
setAnnPattern ann (APattern _ aqn vars) = APattern ann aqn vars

----------------------------------------------------------------------------
--- Eta-expansion of user-defined function declarations.
etaExpandFuncDecl :: TAFuncDecl -> TAFuncDecl
etaExpandFuncDecl fdecl@(AFunc _ _ _ _ (AExternal _ _)) = fdecl
etaExpandFuncDecl (AFunc qn ar vis texp (ARule tr args rhs)) =
  AFunc qn (ar + length etavars) vis texp
        (ARule tr (args ++ etavars)
               (applyExp rhs (map (\ (v,t) -> AVar t v) etavars)))
 where
  freshvar = maximum (0 : map fst args ++ allVars rhs) + 1
  argtypes = argTypes texp
  etavars  = zip [freshvar ..] (drop ar argtypes)

--- Apply arguments to a given FlatCurry expression by transforming
--- this expression whenever possible.
applyExp :: TAExpr -> [TAExpr] -> TAExpr
applyExp exp []           = exp
applyExp exp vars@(v1:vs) = case exp of
  AComb te ct (qf,qt) cargs -> case ct of
    FuncPartCall m -> applyExp (AComb (dropArgTypes 1 te)
                                      (if m==1 then FuncCall
                                               else FuncPartCall (m-1))
                                      (qf,qt)
                                      (cargs ++ [v1]))
                                      vs
    _ -> applyExp (AComb (dropArgTypes 1 te) FuncCall
                         (pre "apply",
                          FuncType te
                                   (FuncType (annExpr v1) (dropArgTypes 1 te)))
                         [exp, v1]) vs
  ACase  te ct e brs -> ACase (adjustType te) ct e
                 (map (\ (ABranch p be) -> ABranch p (applyExp be vars)) brs)
  AOr    te e1 e2 -> AOr (adjustType te) (applyExp e1 vars) (applyExp e2 vars)
  ALet   te bs e  -> ALet   (adjustType te) bs (applyExp e vars)
  AFree  te fvs e -> AFree  (adjustType te) fvs (applyExp e vars)
  ATyped te e ty  -> ATyped (adjustType te) (applyExp e vars) (adjustType ty)
  AVar   te _     -> applyExp (AComb (dropArgTypes 1 te) FuncCall
                                     (pre "apply",
                                      FuncType te (FuncType (annExpr v1)
                                                          (dropArgTypes 1 te)))
                                     [exp, v1]) vs
  ALit   _  _     -> error "etaExpandFuncDecl: cannot apply literal"
 where
  adjustType ty = dropArgTypes (length vars) ty

--- Remove the given number of argument types from a (nested) functional type.
dropArgTypes :: Int -> TypeExpr -> TypeExpr
dropArgTypes n ty
  | n==0      = ty
  | otherwise = case ty of FuncType _ rt -> dropArgTypes (n-1) rt
                           _ -> error "dropArgTypes: too few argument types"

----------------------------------------------------------------------------
--- Is the type expression a base type?
isBaseType :: TypeExpr -> Bool
isBaseType (TVar _)         = False
isBaseType (TCons _ targs)  = null targs
isBaseType (FuncType _ _)   = False
isBaseType (ForallType _ _) = False

----------------------------------------------------------------------------
--- Compute type matching, i.e., if `matchType t1 t2 = s`, then `t2 = s(t1)`.
matchType :: TypeExpr -> TypeExpr -> Maybe AFCSubst
matchType t1 t2 = case (t1,t2) of
  (TVar v        , _) -> Just $ if t1 == t2 then emptyAFCSubst
                                            else addToFM emptyAFCSubst v t2
  (TCons tc1 ts1 , TCons tc2 ts2) | tc1 == tc2 -> matchTypes ts1 ts2
  (FuncType a1 r1, FuncType a2 r2) -> matchTypes [a1,r1] [a2,r2]
  (ForallType _ _, _) -> error "matchType: ForallType occurred"
  (_, ForallType _ _) -> error "matchType: ForallType occurred"
  _ -> Nothing

matchTypes :: [TypeExpr] -> [TypeExpr] -> Maybe AFCSubst
matchTypes []       []       = Just emptyAFCSubst
matchTypes []       (_:_)    = Nothing
matchTypes (_:_)    []       = Nothing
matchTypes (t1:ts1) (t2:ts2) = do
  s <- matchType t1 t2
  t <- matchTypes (map (subst s) ts1)(map (subst s) ts2)
  return (plusFM s t)

----------------------------------------------------------------------------
--- Transform name into Prelude-qualified name.
pre :: String -> QName
pre f = ("Prelude",f)

----------------------------------------------------------------------------