1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
|
module Data.FiniteMap (
FM,
emptyFM,
unitFM,
listToFM,
addToFM,
addToFM_C,
addListToFM,
addListToFM_C,
delFromFM,
delListFromFM,
splitFM,
plusFM,
plusFM_C,
minusFM,
intersectFM,
intersectFM_C,
foldFM,
mapFM,
filterFM,
sizeFM,
eqFM,
isEmptyFM,
elemFM,
lookupFM,
lookupWithDefaultFM,
keyOrder,
fmToList,
keysFM,
eltsFM,
fmSortBy,
minFM,maxFM,updFM, fmToListPreOrder,
showFM, readFM
) where
import Data.Maybe
type LeKey key = key -> key -> Bool
emptyFM :: (LeKey key) -> FM key _
emptyFM le = FM le EmptyFM
unitFM :: (LeKey key) -> key -> elt -> FM key elt
unitFM le key elt = FM le (unitFM' key elt)
unitFM' :: key -> elt -> FiniteMap key elt
unitFM' key elt = BranchFM key elt 1 EmptyFM EmptyFM
listToFM :: Eq key => (LeKey key) -> [(key,elt)] -> FM key elt
listToFM le = addListToFM (emptyFM le)
addToFM :: Eq key => FM key elt -> key -> elt -> FM key elt
addToFM (FM le fm) key elt = FM le (addToFM' le fm key elt)
addToFM' :: Eq key => (LeKey key) -> FiniteMap key elt -> key -> elt
-> FiniteMap key elt
addToFM' le fm key elt = addToFM_C' le (\ _ new -> new) fm key elt
addToFM_C' :: Eq key => (LeKey key) -> (elt -> elt -> elt)
-> FiniteMap key elt -> key -> elt -> FiniteMap key elt
addToFM_C' _ _ EmptyFM key elt = unitFM' key elt
addToFM_C' le combiner (BranchFM key elt size fm_l fm_r) new_key new_elt
= if le new_key key
then mkBalBranch key elt (addToFM_C' le combiner fm_l new_key new_elt) fm_r
else
if new_key==key
then BranchFM new_key (combiner elt new_elt) size fm_l fm_r
else mkBalBranch key elt fm_l (addToFM_C' le combiner fm_r new_key new_elt)
addListToFM :: Eq key => FM key elt -> [(key,elt)] -> FM key elt
addListToFM (FM le fm) key_elt_pairs =
FM le (addListToFM' le fm key_elt_pairs)
addListToFM' :: Eq key => (LeKey key) -> FiniteMap key elt
-> [(key, elt)] -> FiniteMap key elt
addListToFM' le fm key_elt_pairs =
addListToFM_C' le (\ _ new -> new) fm key_elt_pairs
addListToFM_C' :: Eq key => (LeKey key) -> (elt -> elt -> elt)
-> FiniteMap key elt -> [(key, elt)] -> FiniteMap key elt
addListToFM_C' le combiner fm key_elt_pairs
= foldl add fm key_elt_pairs
where
add fmap (key,elt) = addToFM_C' le combiner fmap key elt
addToFM_C :: Eq key => (elt -> elt -> elt) -> FM key elt -> key -> elt
-> FM key elt
addToFM_C combiner (FM le fm) key elt =
FM le (addToFM_C' le combiner fm key elt)
addListToFM_C :: Eq key => (elt -> elt -> elt) -> FM key elt -> [(key,elt)]
-> FM key elt
addListToFM_C combiner (FM le fm) key_elt_pairs =
FM le (addListToFM_C' le combiner fm key_elt_pairs)
delFromFM :: Eq key => FM key elt -> key -> FM key elt
delFromFM (FM le fm) del_key = FM le (delFromFM' le fm del_key)
delFromFM' :: Eq key => (LeKey key) -> FiniteMap key elt -> key
-> FiniteMap key elt
delFromFM' _ EmptyFM _ = EmptyFM
delFromFM' le (BranchFM key elt _ fm_l fm_r) del_key
= if le del_key key
then mkBalBranch key elt (delFromFM' le fm_l del_key) fm_r
else
if del_key==key
then glueBal le fm_l fm_r
else mkBalBranch key elt fm_l (delFromFM' le fm_r del_key)
delListFromFM :: Eq key => FM key elt -> [key] -> FM key elt
delListFromFM (FM le fm) keys = FM le (foldl (delFromFM' le) fm keys)
updFM :: Eq a => FM a b -> a -> (b -> b) -> FM a b
updFM (FM lt fm) i f = FM lt (upd fm)
where
upd EmptyFM = EmptyFM
upd (BranchFM k x h l r)
| i == k = BranchFM k (f x) h l r
| lt i k = BranchFM k x h (upd l) r
| otherwise = BranchFM k x h l (upd r)
splitFM :: Eq a => FM a b -> a -> Maybe (FM a b,(a,b))
splitFM g v = maybe Nothing (\x->Just (delFromFM g v,(v,x))) (lookupFM g v)
plusFM :: Eq key => FM key elt -> FM key elt -> FM key elt
plusFM (FM le1 fm1) (FM _ fm2) = FM le1 (plusFM' le1 fm1 fm2)
plusFM' :: Eq key => (LeKey key)
-> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
plusFM' _ EmptyFM fm2 = fm2
plusFM' _ (BranchFM split_key1 elt1 s1 left1 right1) EmptyFM =
(BranchFM split_key1 elt1 s1 left1 right1)
plusFM' le (BranchFM split_key1 elt1 s1 left1 right1)
(BranchFM split_key elt2 _ left right)
= mkVBalBranch le split_key elt2 (plusFM' le lts left) (plusFM' le gts right)
where
fm1 = BranchFM split_key1 elt1 s1 left1 right1
lts = splitLT le fm1 split_key
gts = splitGT le fm1 split_key
plusFM_C :: Eq key => (elt -> elt -> elt)
-> FM key elt -> FM key elt -> FM key elt
plusFM_C combiner (FM le1 fm1) (FM _ fm2) =
FM le1 (plusFM_C' le1 combiner fm1 fm2)
plusFM_C' :: Eq key => LeKey key -> (elt -> elt -> elt)
-> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
plusFM_C' _ _ EmptyFM fm2 = fm2
plusFM_C' _ _ (BranchFM split_key1 elt1 s1 left1 right1) EmptyFM =
BranchFM split_key1 elt1 s1 left1 right1
plusFM_C' le combiner (BranchFM split_key1 elt1 s1 left1 right1)
(BranchFM split_key elt2 _ left right)
= mkVBalBranch le split_key new_elt
(plusFM_C' le combiner lts left)
(plusFM_C' le combiner gts right)
where
fm1 = BranchFM split_key1 elt1 s1 left1 right1
lts = splitLT le fm1 split_key
gts = splitGT le fm1 split_key
new_elt = case lookupFM' le fm1 split_key of
Nothing -> elt2
Just elt1' -> combiner elt1' elt2
minusFM :: Eq key => FM key elt -> FM key elt -> FM key elt
minusFM (FM le1 fm1) (FM _ fm2) = FM le1 (minusFM' le1 fm1 fm2)
minusFM' :: Eq key => (LeKey key)
-> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
minusFM' _ EmptyFM _ = EmptyFM
minusFM' _ (BranchFM split_key1 elt1 s1 left1 right1) EmptyFM =
BranchFM split_key1 elt1 s1 left1 right1
minusFM' le (BranchFM split_key1 elt1 s1 left1 right1)
(BranchFM split_key _ _ left right)
= glueVBal le (minusFM' le lts left) (minusFM' le gts right)
where
fm1 = BranchFM split_key1 elt1 s1 left1 right1
lts = splitLT le fm1 split_key
gts = splitGT le fm1 split_key
intersectFM :: Eq key => FM key elt -> FM key elt -> FM key elt
intersectFM (FM le1 fm1) (FM _ fm2) = FM le1 (intersectFM' le1 fm1 fm2)
intersectFM' :: Eq key => LeKey key
-> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
intersectFM' le fm1 fm2 = intersectFM_C' le (\ _ right -> right) fm1 fm2
intersectFM_C :: Eq key => (elt -> elt2 -> elt3) -> FM key elt -> FM key elt2
-> FM key elt3
intersectFM_C combiner (FM le1 fm1) (FM _ fm2) =
FM le1 (intersectFM_C' le1 combiner fm1 fm2)
intersectFM_C' :: Eq key => LeKey key -> (elt -> elt2 -> elt3)
-> FiniteMap key elt -> FiniteMap key elt2 -> FiniteMap key elt3
intersectFM_C' _ _ _ EmptyFM = EmptyFM
intersectFM_C' _ _ EmptyFM (BranchFM _ _ _ _ _) = EmptyFM
intersectFM_C' le combiner (BranchFM split_key1 elt1 s1 left1 right1)
(BranchFM split_key elt2 _ left right)
| isJust maybe_elt1
= mkVBalBranch le split_key (combiner elt1' elt2)
(intersectFM_C' le combiner lts left)
(intersectFM_C' le combiner gts right)
| otherwise
= glueVBal le (intersectFM_C' le combiner lts left)
(intersectFM_C' le combiner gts right)
where
fm1 = BranchFM split_key1 elt1 s1 left1 right1
lts = splitLT le fm1 split_key
gts = splitGT le fm1 split_key
maybe_elt1 = lookupFM' le fm1 split_key
Just elt1' = maybe_elt1
foldFM :: (key -> elt -> a -> a) -> a -> FM key elt -> a
foldFM k z (FM le fm) = foldFM' le k z fm
foldFM' :: LeKey key -> (key -> elt -> a -> a) -> a -> FiniteMap key elt -> a
foldFM' _ _ z EmptyFM = z
foldFM' le k z (BranchFM key elt _ fm_l fm_r)
= foldFM' le k (k key elt (foldFM' le k z fm_r)) fm_l
mapFM :: (key -> elt1 -> elt2) -> FM key elt1 -> FM key elt2
mapFM f (FM le fm) = FM le (mapFM' le f fm)
mapFM' :: LeKey key -> (key -> elt1 -> elt2)
-> FiniteMap key elt1 -> FiniteMap key elt2
mapFM' _ _ EmptyFM = EmptyFM
mapFM' le f (BranchFM key elt size fm_l fm_r)
= BranchFM key (f key elt) size (mapFM' le f fm_l) (mapFM' le f fm_r)
filterFM :: Eq key => (key -> elt -> Bool) -> FM key elt -> FM key elt
filterFM p (FM le fm) = FM le (filterFM' le p fm)
filterFM' :: Eq key => LeKey key -> (key -> elt -> Bool)
-> FiniteMap key elt -> FiniteMap key elt
filterFM' _ _ EmptyFM = EmptyFM
filterFM' le p (BranchFM key elt _ fm_l fm_r)
| p key elt
= mkVBalBranch le key elt (filterFM' le p fm_l) (filterFM' le p fm_r)
| otherwise
= glueVBal le (filterFM' le p fm_l) (filterFM' le p fm_r)
sizeFM :: FM _ _ -> Int
sizeFM (FM _ EmptyFM) = 0
sizeFM (FM _ (BranchFM _ _ size _ _)) = size
sizeFM' :: FiniteMap _ _ -> Int
sizeFM' EmptyFM = 0
sizeFM' (BranchFM _ _ size _ _) = size
eqFM :: (Eq key, Eq elt) => FM key elt -> FM key elt -> Bool
fm_1 `eqFM` fm_2 =
(sizeFM fm_1 == sizeFM fm_2) &&
(fmToList fm_1 == fmToList fm_2)
isEmptyFM :: FM _ _ -> Bool
isEmptyFM fm = sizeFM fm == 0
elemFM :: Eq key => key -> FM key _ -> Bool
key `elemFM` fm = isJust (lookupFM fm key)
lookupFM :: Eq key => FM key elt -> key -> Maybe elt
lookupFM (FM le fm) key = lookupFM' le fm key
lookupFM' :: Eq key => LeKey key -> FiniteMap key elt -> key -> Maybe elt
lookupFM' _ EmptyFM _ = Nothing
lookupFM' le (BranchFM key elt _ fm_l fm_r) key_to_find
= if le key_to_find key
then lookupFM' le fm_l key_to_find
else if key_to_find==key
then Just elt
else lookupFM' le fm_r key_to_find
lookupWithDefaultFM :: Eq key => FM key elt -> elt -> key -> elt
lookupWithDefaultFM fm deflt key
= case lookupFM fm key of
Nothing -> deflt
Just elt -> elt
keyOrder :: FM key _ -> (key->key->Bool)
keyOrder (FM lt _) = lt
minFM :: FM a b -> Maybe (a,b)
minFM = min . tree
where
min EmptyFM = Nothing
min (BranchFM k x _ l _) | isBranchFM l = min l
| otherwise = Just (k,x)
maxFM :: FM a b -> Maybe (a,b)
maxFM = max . tree
where
max EmptyFM = Nothing
max (BranchFM k x _ _ r) | isBranchFM r = max r
| otherwise = Just (k,x)
fmToList :: FM key elt -> [(key,elt)]
fmToList fm = foldFM (\ key elt rest -> (key,elt) : rest) [] fm
keysFM :: FM key _ -> [key]
keysFM fm = foldFM (\ key _ rest -> key : rest) [] fm
eltsFM :: FM _ elt -> [elt]
eltsFM fm = foldFM (\ _ elt rest -> elt : rest) [] fm
fmToListPreOrder :: FM key elt -> [(key,elt)]
fmToListPreOrder (FM _ fm) = pre fm []
where
pre EmptyFM xs = xs
pre (BranchFM k x _ l r) xs = (k,x):pre l (pre r xs)
fmSortBy :: Eq key => LeKey key -> [key] -> [key]
fmSortBy p l = keysFM (listToFM p (zip l (repeat ())))
showFM :: (Show k, Show v) => FM k v -> String
showFM (FM _ fm) = show fm
readFM :: (Read key, Read val) => LeKey key -> String -> FM key val
readFM p s = FM p (read s)
data FM key elt = FM (LeKey key) (FiniteMap key elt)
tree :: FM key elt -> FiniteMap key elt
tree (FM _ fm) = fm
data FiniteMap key elt
= EmptyFM
| BranchFM key elt
Int
(FiniteMap key elt)
(FiniteMap key elt)
deriving (Show, Read)
isEmptyFM' :: FiniteMap _ _ -> Bool
isEmptyFM' fm = sizeFM' fm == 0
isBranchFM :: FiniteMap _ _ -> Bool
isBranchFM (BranchFM _ _ _ _ _) = True
isBranchFM EmptyFM = False
sIZE_RATIO :: Int
sIZE_RATIO = 5
mkBranch :: Int
-> key -> elt
-> FiniteMap key elt -> FiniteMap key elt
-> FiniteMap key elt
mkBranch _ key elt fm_l fm_r =
let result = BranchFM key elt (unbox (1 + left_size + right_size)) fm_l fm_r
in
result
where
left_size = sizeFM' fm_l
right_size = sizeFM' fm_r
unbox :: Int -> Int
unbox x = x
mkBalBranch :: key -> elt
-> FiniteMap key elt -> FiniteMap key elt
-> FiniteMap key elt
mkBalBranch key elt fm_L fm_R
| size_l + size_r < 2
= mkBranch 1 key elt fm_L fm_R
| size_r > sIZE_RATIO * size_l
= case fm_R of
BranchFM _ _ _ fm_rl fm_rr ->
if sizeFM' fm_rl < 2 * sizeFM' fm_rr
then single_L fm_L fm_R
else double_L fm_L fm_R
EmptyFM -> error "FiniteMap.mkBalBranch"
| size_l > sIZE_RATIO * size_r
= case fm_L of
BranchFM _ _ _ fm_ll fm_lr ->
if sizeFM' fm_lr < 2 * sizeFM' fm_ll
then single_R fm_L fm_R
else double_R fm_L fm_R
EmptyFM -> error "FiniteMap.mkBalBranch"
| otherwise
= mkBranch 2 key elt fm_L fm_R
where
size_l = sizeFM' fm_L
size_r = sizeFM' fm_R
single_L fm_l (BranchFM key_r elt_r _ fm_rl fm_rr)
= mkBranch 3 key_r elt_r (mkBranch 4 key elt fm_l fm_rl) fm_rr
single_L _ EmptyFM = error "FiniteMap.single_L"
double_L fm_l (BranchFM key_r elt_r _ (BranchFM key_rl elt_rl _ fm_rll fm_rlr) fm_rr)
= mkBranch 5 key_rl elt_rl (mkBranch 6 key elt fm_l fm_rll)
(mkBranch 7 key_r elt_r fm_rlr fm_rr)
double_L _ EmptyFM = error "FiniteMap.double_L"
double_L _ (BranchFM _ _ _ EmptyFM _) = error "FiniteMap.double_L"
single_R (BranchFM key_l elt_l _ fm_ll fm_lr) fm_r
= mkBranch 8 key_l elt_l fm_ll (mkBranch 9 key elt fm_lr fm_r)
single_R EmptyFM _ = error "FiniteMap.single_R"
double_R (BranchFM key_l elt_l _ fm_ll (BranchFM key_lr elt_lr _ fm_lrl fm_lrr)) fm_r
= mkBranch 10 key_lr elt_lr (mkBranch 11 key_l elt_l fm_ll fm_lrl)
(mkBranch 12 key elt fm_lrr fm_r)
double_R EmptyFM _ = error "FiniteMap.double_R"
double_R (BranchFM _ _ _ _ EmptyFM) _ = error "FiniteMap.double_R"
mkVBalBranch :: Eq key => (LeKey key)
-> key -> elt
-> FiniteMap key elt -> FiniteMap key elt
-> FiniteMap key elt
mkVBalBranch le key elt EmptyFM fm_r = addToFM' le fm_r key elt
mkVBalBranch le key elt (BranchFM key_l elt_l s_l fm_ll fm_lr) EmptyFM =
addToFM' le (BranchFM key_l elt_l s_l fm_ll fm_lr) key elt
mkVBalBranch le key elt (BranchFM key_l elt_l s_l fm_ll fm_lr)
(BranchFM key_r elt_r s_r fm_rl fm_rr)
| sIZE_RATIO * size_l < size_r
= mkBalBranch key_r elt_r (mkVBalBranch le key elt fm_l fm_rl) fm_rr
| sIZE_RATIO * size_r < size_l
= mkBalBranch key_l elt_l fm_ll (mkVBalBranch le key elt fm_lr fm_r)
| otherwise
= mkBranch 13 key elt fm_l fm_r
where
fm_l = BranchFM key_l elt_l s_l fm_ll fm_lr
fm_r = BranchFM key_r elt_r s_r fm_rl fm_rr
size_l = sizeFM' fm_l
size_r = sizeFM' fm_r
glueBal :: (LeKey key)
-> FiniteMap key elt -> FiniteMap key elt
-> FiniteMap key elt
glueBal le fm1 fm2 =
if isEmptyFM' fm1
then fm2
else if isEmptyFM' fm2
then fm1
else
let (mid_key1, mid_elt1) = findMax fm1
(mid_key2, mid_elt2) = findMin fm2
in
if sizeFM' fm2 > sizeFM' fm1
then mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin le fm2)
else mkBalBranch mid_key1 mid_elt1 (deleteMax le fm1) fm2
glueVBal :: (LeKey key)
-> FiniteMap key elt -> FiniteMap key elt
-> FiniteMap key elt
glueVBal le fm_l fm_r =
if isEmptyFM' fm_l
then fm_r
else if isEmptyFM' fm_r
then fm_l
else
let BranchFM key_l elt_l _ fm_ll fm_lr = fm_l
BranchFM key_r elt_r _ fm_rl fm_rr = fm_r
size_l = sizeFM' fm_l
size_r = sizeFM' fm_r
in
if sIZE_RATIO * size_l < size_r
then
mkBalBranch key_r elt_r (glueVBal le fm_l fm_rl) fm_rr
else if sIZE_RATIO * size_r < size_l
then
mkBalBranch key_l elt_l fm_ll (glueVBal le fm_lr fm_r)
else glueBal le fm_l fm_r
splitLT, splitGT :: Eq key => (LeKey key) -> FiniteMap key elt -> key
-> FiniteMap key elt
splitLT _ EmptyFM _ = EmptyFM
splitLT le (BranchFM key elt _ fm_l fm_r) split_key
= if le split_key key
then splitLT le fm_l split_key
else if split_key == key
then fm_l
else mkVBalBranch le key elt fm_l (splitLT le fm_r split_key)
splitGT _ EmptyFM _ = EmptyFM
splitGT le (BranchFM key elt _ fm_l fm_r) split_key
= if le split_key key
then mkVBalBranch le key elt (splitGT le fm_l split_key) fm_r
else if split_key == key
then fm_r
else splitGT le fm_r split_key
findMin :: FiniteMap key elt -> (key,elt)
findMin EmptyFM = error "FiniteMap.findMin: empty map"
findMin (BranchFM key elt _ EmptyFM _) = (key,elt)
findMin (BranchFM _ _ _ (BranchFM key_l elt_l s_l fm_ll fm_lr)_) =
findMin (BranchFM key_l elt_l s_l fm_ll fm_lr)
deleteMin :: (LeKey key) -> FiniteMap key elt -> FiniteMap key elt
deleteMin _ EmptyFM = error "FiniteMap.deleteMin: empty map"
deleteMin _ (BranchFM _ _ _ EmptyFM fm_r) = fm_r
deleteMin le (BranchFM key elt _ (BranchFM key_l elt_l s_l fm_ll fm_lr) fm_r) =
mkBalBranch key elt (deleteMin le (BranchFM key_l elt_l s_l fm_ll fm_lr))
fm_r
findMax :: FiniteMap key elt -> (key,elt)
findMax EmptyFM = error "FiniteMap.findMax: empty map"
findMax (BranchFM key elt _ _ EmptyFM) = (key,elt)
findMax (BranchFM _ _ _ _ (BranchFM key_r elt_r s_r fm_rl fm_rr)) =
findMax (BranchFM key_r elt_r s_r fm_rl fm_rr)
deleteMax :: (LeKey key) -> FiniteMap key elt -> FiniteMap key elt
deleteMax _ EmptyFM = error "FiniteMap.deleteMax: empty map"
deleteMax _ (BranchFM _ _ _ fm_l EmptyFM) = fm_l
deleteMax le (BranchFM key elt _ fm_l (BranchFM key_r elt_r s_r fm_rl fm_rr)) =
mkBalBranch key elt fm_l
(deleteMax le (BranchFM key_r elt_r s_r fm_rl fm_rr))
type FiniteSet key = FM key ()
emptySet :: (LeKey key) -> FiniteSet key
mkSet :: Eq key => (LeKey key) -> [key] -> FiniteSet key
isEmptySet :: FiniteSet _ -> Bool
elementOf :: Eq key => key -> FiniteSet key -> Bool
minusSet :: Eq key => FiniteSet key -> FiniteSet key -> FiniteSet key
setToList :: FiniteSet key -> [key]
union :: Eq key => FiniteSet key -> FiniteSet key -> FiniteSet key
emptySet = emptyFM
mkSet le xs = listToFM le [ (x, ()) | x <- xs]
isEmptySet = isEmptyFM
elementOf = elemFM
minusSet = minusFM
setToList = keysFM
union = plusFM
|