1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
-----------------------------------------------------------------------------
--- *IMPORTANT NOTE*: This library is deprecated and included only
--- for compatibility with older programs.
--- Use library `Data.Map` (in package `containers`) instead!
---
--- A finite map is an efficient purely functional data structure
--- to store a mapping from keys to values.
--- In order to store the mapping efficiently, an irreflexive(!) order predicate
--- has to be given, i.e., the order predicate `le` should not satisfy
--- `(le x x)` for some key `x`.
---
--- Example: To store a mapping from `Int -> String`, the finite map needs
--- a Boolean predicate like `(<)`.
--- This version was ported from a corresponding Haskell library
---
--- @author Frank Huch, Bernd Brassel
--- @version January 2019
-----------------------------------------------------------------------------

module Data.FiniteMap (
        FM,                -- abstract type

        emptyFM,
        unitFM,
        listToFM,

        addToFM,
        addToFM_C,
        addListToFM,
        addListToFM_C,
        delFromFM,
        delListFromFM,
        splitFM,

        plusFM,
        plusFM_C,
        minusFM,
        intersectFM,
        intersectFM_C,

        foldFM,
        mapFM,
        filterFM,

        sizeFM,
        eqFM,
        isEmptyFM,
        elemFM,
        lookupFM,
        lookupWithDefaultFM,
        keyOrder,

        fmToList,
        keysFM,
        eltsFM,
        fmSortBy,

        minFM,maxFM,updFM, fmToListPreOrder,

        showFM, readFM
    ) where

import Data.Maybe

--- order predicates are boolean
type LeKey key = key -> key -> Bool

-----------------------------------------------
--        BUILDING finite maps
-----------------------------------------------

--- The empty finite map.
--- @param le an irreflexive order predicate on the keys.
--- @result an empty finite map
emptyFM :: (LeKey key) -> FM key _
emptyFM le = FM le EmptyFM

--- Construct a finite map with only a single element.
--- @param le an irreflexive order predicate on the keys.
--- @param key key of
--- @param elt the single element to form
--- @result a finite map with only a single element
unitFM :: (LeKey key) -> key -> elt -> FM key elt
unitFM le key elt = FM le (unitFM' key elt)

unitFM' :: key -> elt -> FiniteMap key elt
unitFM' key elt = BranchFM key elt 1 EmptyFM EmptyFM


--- Builts a finite map from given list of tuples (key,element).
--- For multiple occurences of key, the last corresponding
--- element of the list is taken.
--- @param le an irreflexive order predicate on the keys.
listToFM :: Eq key => (LeKey key) -> [(key,elt)] -> FM key elt
listToFM le = addListToFM (emptyFM le)

-----------------------------------------------
--        ADDING AND DELETING
-----------------------------------------------

--- Throws away any previous binding and stores the new one given.

addToFM :: Eq key => FM key elt -> key -> elt  -> FM key elt
addToFM (FM le fm) key elt = FM le (addToFM' le fm key elt)

addToFM' :: Eq key => (LeKey key) -> FiniteMap key elt -> key -> elt
         -> FiniteMap key elt
addToFM' le fm key elt = addToFM_C' le (\ _ new -> new) fm key elt

addToFM_C' :: Eq key => (LeKey key) -> (elt -> elt -> elt)
           -> FiniteMap key elt -> key -> elt -> FiniteMap key elt
addToFM_C' _ _ EmptyFM key elt = unitFM' key elt
addToFM_C' le combiner (BranchFM key elt size fm_l fm_r) new_key new_elt
  = if le new_key key
    then mkBalBranch key elt (addToFM_C' le combiner fm_l new_key new_elt) fm_r
    else
      if new_key==key
      then BranchFM new_key (combiner elt new_elt) size fm_l fm_r
      else mkBalBranch key elt fm_l (addToFM_C' le combiner fm_r new_key new_elt)


--- Throws away any previous bindings and stores the new ones given.
--- The items are added starting with the first one in the list
addListToFM :: Eq key => FM key elt -> [(key,elt)] -> FM key elt
addListToFM (FM le fm) key_elt_pairs =
  FM le (addListToFM' le fm key_elt_pairs)

addListToFM' :: Eq key => (LeKey key) -> FiniteMap key elt
             -> [(key, elt)] -> FiniteMap key elt
addListToFM' le fm key_elt_pairs =
  addListToFM_C' le (\ _ new -> new) fm key_elt_pairs

addListToFM_C' :: Eq key => (LeKey key) -> (elt -> elt -> elt)
               -> FiniteMap key elt -> [(key, elt)] -> FiniteMap key elt
addListToFM_C' le combiner fm key_elt_pairs
  = foldl add fm key_elt_pairs        -- foldl adds from the left
  where
    add fmap (key,elt) = addToFM_C' le combiner fmap key elt


--- Instead of throwing away the old binding,
--- addToFM_C combines the new element with the old one.
--- @param combiner a function combining to elements
--- @param fm a finite map
--- @param key the key of the elements to be combined
--- @param elt the new element
--- @result a modified finite map
addToFM_C :: Eq key => (elt -> elt -> elt) -> FM key elt -> key -> elt
                                 -> FM key elt
addToFM_C combiner (FM le fm) key elt =
  FM le (addToFM_C' le combiner fm key elt)

--- Combine with a list of tuples (key,element), cf. addToFM_C
addListToFM_C :: Eq key => (elt -> elt -> elt) -> FM key elt -> [(key,elt)]
              -> FM key elt
addListToFM_C combiner (FM le fm) key_elt_pairs =
  FM le (addListToFM_C' le combiner fm key_elt_pairs)

--- Deletes key from finite map.
--- Deletion doesn't complain if you try to delete something
--- which isn't there
delFromFM :: Eq key => FM key elt -> key   -> FM key elt
delFromFM (FM le fm) del_key = FM le (delFromFM' le fm del_key)

delFromFM' :: Eq key => (LeKey key) -> FiniteMap key elt -> key
           -> FiniteMap key elt
delFromFM' _ EmptyFM _ = EmptyFM
delFromFM' le (BranchFM key elt _ fm_l fm_r) del_key
  = if le del_key key
    then mkBalBranch key elt (delFromFM' le fm_l del_key) fm_r
    else
      if del_key==key
        then glueBal le fm_l fm_r
        else mkBalBranch key elt fm_l (delFromFM' le fm_r del_key)

--- Deletes a list of keys from finite map.
--- Deletion doesn't complain if you try to delete something
--- which isn't there
delListFromFM :: Eq key => FM key elt -> [key] -> FM key elt
delListFromFM (FM le fm) keys = FM le (foldl (delFromFM' le) fm keys)

--- Applies a function to element bound to given key.
updFM :: Eq a => FM a b -> a -> (b -> b) -> FM a b
updFM (FM lt fm) i f = FM lt (upd fm)
  where
    upd EmptyFM                          =  EmptyFM
    upd (BranchFM k x h l r)
            | i == k     =  BranchFM k (f x) h l r
            | lt i k     =  BranchFM k x h (upd l) r
            | otherwise  =  BranchFM k x h l (upd r)

--- Combines delFrom and lookup.
splitFM :: Eq a => FM a b -> a -> Maybe (FM a b,(a,b))
splitFM g v = maybe Nothing (\x->Just (delFromFM g v,(v,x))) (lookupFM g v)

-------------------------------------------------
-- COMBINING finite maps
-------------------------------------------------

--- Efficiently add key/element mappings of two maps into a single one.
--- Bindings in right argument shadow those in the left
plusFM :: Eq key => FM key elt -> FM key elt -> FM key elt
plusFM (FM le1 fm1) (FM _ fm2) = FM le1 (plusFM' le1 fm1 fm2)

plusFM' :: Eq key => (LeKey key)
        -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
plusFM' _  EmptyFM fm2 = fm2
plusFM' _  (BranchFM split_key1 elt1 s1 left1 right1) EmptyFM =
  (BranchFM split_key1 elt1 s1 left1 right1)
plusFM' le (BranchFM split_key1 elt1 s1 left1 right1)
           (BranchFM split_key elt2 _ left right)
  = mkVBalBranch le split_key elt2 (plusFM' le lts left) (plusFM' le gts right)
  where
    fm1 = BranchFM split_key1 elt1 s1 left1 right1
    lts     = splitLT le fm1 split_key
    gts     = splitGT le fm1 split_key

--- Efficiently combine key/element mappings of two maps into a single one,
--- cf. addToFM_C
plusFM_C :: Eq key => (elt -> elt -> elt)
         -> FM key elt -> FM key elt -> FM key elt
plusFM_C combiner (FM le1 fm1) (FM _ fm2) =
  FM le1 (plusFM_C' le1 combiner fm1 fm2)

plusFM_C' :: Eq key => LeKey key -> (elt -> elt -> elt)
          -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
plusFM_C' _  _        EmptyFM fm2 = fm2
plusFM_C' _  _        (BranchFM split_key1 elt1 s1 left1 right1) EmptyFM =
          BranchFM split_key1 elt1 s1 left1 right1
plusFM_C' le combiner (BranchFM split_key1 elt1 s1 left1 right1)
                      (BranchFM split_key elt2 _ left right)
  = mkVBalBranch le split_key new_elt
                 (plusFM_C' le combiner lts left)
                 (plusFM_C' le combiner gts right)
  where
    fm1 = BranchFM split_key1 elt1 s1 left1 right1
    lts     = splitLT le fm1 split_key
    gts     = splitGT le fm1 split_key
    new_elt = case lookupFM' le fm1 split_key of
                Nothing    -> elt2
                Just elt1' -> combiner elt1' elt2

--- (minusFM a1 a2) deletes from a1 any bindings which are bound in a2
minusFM :: Eq key => FM key elt -> FM key elt -> FM key elt
minusFM (FM le1 fm1) (FM _ fm2) = FM le1 (minusFM' le1 fm1 fm2)

minusFM' :: Eq key => (LeKey key)
         -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
minusFM' _  EmptyFM _ = EmptyFM
minusFM' _  (BranchFM split_key1 elt1 s1 left1 right1) EmptyFM =
  BranchFM split_key1 elt1 s1 left1 right1
minusFM' le (BranchFM split_key1 elt1 s1 left1 right1)
            (BranchFM split_key _ _ left right)
  = glueVBal le (minusFM' le lts left) (minusFM' le gts right)
       -- The two can be way different, so we need glueVBal
  where
    fm1 = BranchFM split_key1 elt1 s1 left1 right1
    lts = splitLT le fm1 split_key  -- NB gt and lt, so the equal ones
    gts = splitGT le fm1 split_key  -- are not in either.

--- Filters only those keys that are bound in both of the given maps.
--- The elements will be taken from the second map.
intersectFM :: Eq key => FM key elt -> FM key elt -> FM key elt
intersectFM (FM le1 fm1) (FM _ fm2) = FM le1 (intersectFM' le1 fm1 fm2)

intersectFM' :: Eq key => LeKey key
             -> FiniteMap key elt -> FiniteMap key elt -> FiniteMap key elt
intersectFM' le fm1 fm2 = intersectFM_C' le (\ _ right -> right) fm1 fm2

--- Filters only those keys that are bound in both of the given maps
--- and combines the elements as in addToFM_C.
intersectFM_C :: Eq key => (elt -> elt2 -> elt3) -> FM key elt -> FM key elt2
              -> FM key elt3
intersectFM_C combiner (FM le1 fm1) (FM _ fm2) =
  FM le1 (intersectFM_C' le1 combiner fm1 fm2)

intersectFM_C' :: Eq key => LeKey key -> (elt -> elt2 -> elt3)
               -> FiniteMap key elt -> FiniteMap key elt2 -> FiniteMap key elt3
intersectFM_C' _  _        _        EmptyFM = EmptyFM
intersectFM_C' _  _        EmptyFM (BranchFM _ _ _ _ _) = EmptyFM
intersectFM_C' le combiner (BranchFM split_key1 elt1 s1 left1 right1)
                           (BranchFM split_key elt2 _ left right)

  | isJust maybe_elt1   -- split_elt *is* in intersection
  = mkVBalBranch le split_key (combiner elt1' elt2)
                 (intersectFM_C' le combiner lts left)
                 (intersectFM_C' le combiner gts right)

  | otherwise           -- split_elt is *not* in intersection
  = glueVBal le (intersectFM_C' le combiner lts left)
                (intersectFM_C' le combiner gts right)

  where
    fm1 = BranchFM split_key1 elt1 s1 left1 right1
    lts = splitLT le fm1 split_key      -- NB gt and lt, so the equal ones
    gts = splitGT le fm1 split_key      -- are not in either.

    maybe_elt1 = lookupFM' le fm1 split_key
    Just elt1'  = maybe_elt1

-------------------------------------------------------------
--  MAPPING, FOLDING, FILTERING on finite maps
-------------------------------------------------------------

--- Folds finite map by given function.
foldFM :: (key -> elt -> a -> a) -> a -> FM key elt -> a
foldFM k z (FM le fm) = foldFM' le k z fm

foldFM' :: LeKey key -> (key -> elt -> a -> a) -> a -> FiniteMap key elt -> a
foldFM' _  _ z EmptyFM = z
foldFM' le k z (BranchFM key elt _ fm_l fm_r)
  = foldFM' le k (k key elt (foldFM' le k z fm_r)) fm_l

--- Applies a given function on every element in the map.
mapFM :: (key -> elt1 -> elt2) -> FM key elt1 -> FM key elt2
mapFM f (FM le fm) = FM le (mapFM' le f fm)

mapFM' :: LeKey key -> (key -> elt1 -> elt2)
       -> FiniteMap key elt1 -> FiniteMap key elt2
mapFM' _  _ EmptyFM = EmptyFM
mapFM' le f (BranchFM key elt size fm_l fm_r)
  = BranchFM key (f key elt) size (mapFM' le f fm_l) (mapFM' le f fm_r)

--- Yields a new finite map with only those key/element pairs matching the
--- given predicate.
filterFM  :: Eq key => (key -> elt -> Bool) -> FM key elt -> FM key elt
filterFM p (FM le fm) = FM le (filterFM' le p fm)

filterFM' :: Eq key => LeKey key -> (key -> elt -> Bool)
          -> FiniteMap key elt -> FiniteMap key elt
filterFM' _  _ EmptyFM = EmptyFM
filterFM' le p (BranchFM key elt _ fm_l fm_r)
  | p key elt          -- Keep the item
  = mkVBalBranch le key elt (filterFM' le p fm_l) (filterFM' le p fm_r)

  | otherwise          -- Drop the item
  = glueVBal le (filterFM' le p fm_l) (filterFM' le p fm_r)

-----------------------------------------------------
-- INTERROGATING finite maps
-----------------------------------------------------

--- How many elements does given map contain?
sizeFM :: FM _ _ -> Int
sizeFM (FM _ EmptyFM)               = 0
sizeFM (FM _ (BranchFM _ _ size _ _)) = size

sizeFM' :: FiniteMap _ _ -> Int
sizeFM' EmptyFM              = 0
sizeFM' (BranchFM _ _ size _ _) = size

--- Do two given maps contain the same key/element pairs?
eqFM :: (Eq key, Eq elt) => FM key elt -> FM key elt -> Bool
fm_1 `eqFM` fm_2 =
  (sizeFM   fm_1 == sizeFM   fm_2) &&   -- quick test
  (fmToList fm_1 == fmToList fm_2)

--- Is the given finite map empty?
isEmptyFM        :: FM _ _ -> Bool
isEmptyFM fm = sizeFM fm == 0

--- Does given map contain given key?
elemFM :: Eq key => key -> FM key _ -> Bool
key `elemFM` fm = isJust (lookupFM fm key)

--- Retrieves element bound to given key
lookupFM :: Eq key => FM key elt -> key -> Maybe elt
lookupFM (FM le fm) key = lookupFM' le fm key

lookupFM' :: Eq key => LeKey key -> FiniteMap key elt -> key -> Maybe elt
lookupFM' _  EmptyFM _   = Nothing
lookupFM' le (BranchFM key elt _ fm_l fm_r) key_to_find
  = if le key_to_find key
    then lookupFM' le fm_l key_to_find
    else if key_to_find==key
         then Just elt
         else lookupFM' le fm_r key_to_find


--- Retrieves element bound to given key.
--- If the element is not contained in map, return
--- default value.
lookupWithDefaultFM :: Eq key => FM key elt -> elt -> key -> elt
lookupWithDefaultFM fm deflt key
  = case lookupFM fm key of
      Nothing -> deflt
      Just elt -> elt

--- Retrieves the ordering on which the given finite map is built.
keyOrder :: FM key _ -> (key->key->Bool)
keyOrder (FM lt _) = lt

--- Retrieves the smallest key/element pair in the finite map
--- according to the basic key ordering.
minFM :: FM a b -> Maybe (a,b)
minFM = min . tree
  where
   min EmptyFM            = Nothing
   min (BranchFM k x _ l _) | isBranchFM l = min l
                            | otherwise    = Just (k,x)

--- Retrieves the greatest key/element pair in the finite map
--- according to the basic key ordering.
maxFM :: FM a b -> Maybe (a,b)
maxFM = max . tree
  where
    max EmptyFM            = Nothing
    max (BranchFM k x _ _ r) | isBranchFM r = max r
                             | otherwise    = Just (k,x)



----------------------------------------------------
-- LISTIFYING: transform finite maps to lists
----------------------------------------------------

--- Builds a list of key/element pairs. The list is ordered
--- by the initially given irreflexive order predicate on keys.
fmToList        :: FM key elt -> [(key,elt)]
fmToList fm = foldFM (\ key elt rest -> (key,elt) : rest) [] fm

--- Retrieves a list of keys contained in finite map.
--- The list is ordered
--- by the initially given irreflexive order predicate on keys.
keysFM                :: FM key _ -> [key]
keysFM fm   = foldFM (\ key _   rest -> key : rest)       [] fm

--- Retrieves a list of elements contained in finite map.
--- The list is ordered
--- by the initially given irreflexive order predicate on keys.
eltsFM                :: FM _ elt -> [elt]
eltsFM fm   = foldFM (\ _   elt rest -> elt : rest)       [] fm

--- Retrieves list of key/element pairs in preorder of the internal tree.
--- Useful for lists that will be retransformed into a tree or to match
--- any elements regardless of basic order.

fmToListPreOrder :: FM key elt -> [(key,elt)]
fmToListPreOrder (FM _ fm) = pre fm []
   where
     pre EmptyFM xs = xs
     pre (BranchFM k x _ l r) xs = (k,x):pre l (pre r xs)

--- Sorts a given list by inserting and retrieving from finite map.
--- Duplicates are deleted.
fmSortBy :: Eq key => LeKey key -> [key] -> [key]
fmSortBy p l = keysFM (listToFM p (zip l (repeat ())))

-----------------------------------------------------
-- reading/showing finite maps
-----------------------------------------------------

--- Transforms a finite map into a string. For efficiency reasons,
--- the tree structure is shown which is valid for reading only if one
--- uses the same ordering predicate.
showFM :: (Show k, Show v) => FM k v -> String
showFM (FM _ fm) = show fm

--- Transforms a string representation of a finite map into a finite map.
--- One has two provide the same ordering predicate as used in the
--- original finite map.
readFM :: (Read key, Read val) => LeKey key -> String -> FM key val
readFM p s = FM p (read s)

-----------------------------------------------------
-- internal Implementation
-----------------------------------------------------

data FM key elt = FM (LeKey key) (FiniteMap key elt)

tree :: FM key elt -> FiniteMap key elt
tree (FM _ fm) = fm

data FiniteMap key elt
  = EmptyFM
  | BranchFM key elt             -- Key and elt stored here
    Int{-STRICT-}              -- Size >= 1
    (FiniteMap key elt)        -- Children
    (FiniteMap key elt)
  deriving (Show, Read)

isEmptyFM' :: FiniteMap _ _ -> Bool
isEmptyFM' fm = sizeFM' fm == 0

isBranchFM :: FiniteMap _ _ -> Bool
isBranchFM (BranchFM _ _ _ _ _) = True
isBranchFM EmptyFM              = False

-------------------------------------------------------------------------
--                                                                      -
--  The implementation of balancing                                     -
--                                                                      -
-------------------------------------------------------------------------
-------------------------------------------------------------------------
--                                                                      -
--  Basic construction of a FiniteMap                                   -
--                                                                      -
-------------------------------------------------------------------------
sIZE_RATIO :: Int
sIZE_RATIO = 5

mkBranch :: Int
         -> key -> elt
         -> FiniteMap key elt -> FiniteMap key elt
         -> FiniteMap key elt

mkBranch _{-which-} key elt fm_l fm_r =
    let result = BranchFM key elt (unbox (1 + left_size + right_size)) fm_l fm_r
    in
      result
      --    if sizeFM result <= 8 then
      --     result
      --    else
      --      pprTrace ("mkBranch:"++(show which)) (ppr result) (
      --      result
      --      )
  where
    {-left_ok  = case fm_l of
                 EmptyFM                         -> True
                 BranchFM _ _ _ _ _  -> cmpWithBiggest_left_key key

    cmpWithBiggest_left_key key' = le (fst (findMax fm_l)) key'

    right_ok = case fm_r of
                 EmptyFM                         -> True
                 BranchFM _ _ _ _ _ -> cmpWithSmallest_right_key key

    cmpWithSmallest_right_key key' = le key' (fst (findMin fm_r))

    balance_ok = True -- sigh-}












    left_size  = sizeFM' fm_l
    right_size = sizeFM' fm_r


    unbox :: Int -> Int
    unbox x = x


-------------------------------------------------------------------------
--                                                                        -
-- Balanced construction of a FiniteMap                                 -
--                                                                        -
-------------------------------------------------------------------------
mkBalBranch :: key -> elt
            -> FiniteMap key elt -> FiniteMap key elt
            -> FiniteMap key elt

mkBalBranch key elt fm_L fm_R

  | size_l + size_r < 2
  = mkBranch 1{-which-} key elt fm_L fm_R

  | size_r > sIZE_RATIO * size_l        -- Right tree too big
  = case fm_R of
        BranchFM _ _ _ fm_rl fm_rr ->
              if sizeFM' fm_rl < 2 * sizeFM' fm_rr
                then single_L fm_L fm_R
                else double_L fm_L fm_R
        -- Other case impossible
        EmptyFM -> error "FiniteMap.mkBalBranch"

  | size_l > sIZE_RATIO * size_r        -- Left tree too big
  = case fm_L of
        BranchFM _ _ _ fm_ll fm_lr ->
              if sizeFM' fm_lr < 2 * sizeFM' fm_ll
                then single_R fm_L fm_R
                else double_R fm_L fm_R
        -- Other case impossible
        EmptyFM -> error "FiniteMap.mkBalBranch"

  | otherwise                                -- No imbalance
  = mkBranch 2{-which-} key elt fm_L fm_R

  where
    size_l   = sizeFM' fm_L
    size_r   = sizeFM' fm_R

    single_L fm_l (BranchFM key_r elt_r _ fm_rl fm_rr)
        = mkBranch 3{-which-} key_r elt_r (mkBranch 4{-which-} key elt fm_l fm_rl) fm_rr
    single_L _ EmptyFM = error "FiniteMap.single_L"

    double_L fm_l (BranchFM key_r elt_r _ (BranchFM key_rl elt_rl _ fm_rll fm_rlr) fm_rr)
        = mkBranch 5{-which-} key_rl elt_rl (mkBranch 6{-which-} key   elt   fm_l   fm_rll)
                                 (mkBranch 7{-which-} key_r elt_r fm_rlr fm_rr)
    double_L _ EmptyFM = error "FiniteMap.double_L"
    double_L _ (BranchFM _ _ _ EmptyFM _) = error "FiniteMap.double_L"

    single_R (BranchFM key_l elt_l _ fm_ll fm_lr) fm_r
        = mkBranch 8{-which-} key_l elt_l fm_ll (mkBranch 9{-which-} key elt fm_lr fm_r)
    single_R EmptyFM _ = error "FiniteMap.single_R"

    double_R (BranchFM key_l elt_l _ fm_ll (BranchFM key_lr elt_lr _ fm_lrl fm_lrr)) fm_r
        = mkBranch 10{-which-} key_lr elt_lr (mkBranch 11{-which-} key_l elt_l fm_ll  fm_lrl)
                                 (mkBranch 12{-which-} key   elt   fm_lrr fm_r)
    double_R EmptyFM _ = error "FiniteMap.double_R"
    double_R (BranchFM _ _ _ _ EmptyFM) _ = error "FiniteMap.double_R"


mkVBalBranch :: Eq key => (LeKey key)
             -> key -> elt
             -> FiniteMap key elt -> FiniteMap key elt
             -> FiniteMap key elt

-- Assert: in any call to (mkVBalBranch_C comb key elt l r),
--           (a) all keys in l are < all keys in r
--           (b) all keys in l are < key
--           (c) all keys in r are > key

mkVBalBranch le key elt EmptyFM fm_r = addToFM' le fm_r key elt
mkVBalBranch le key elt (BranchFM key_l elt_l s_l fm_ll fm_lr) EmptyFM =
   addToFM' le (BranchFM key_l elt_l s_l fm_ll fm_lr) key elt

mkVBalBranch le key elt (BranchFM key_l elt_l s_l fm_ll fm_lr)
                        (BranchFM key_r elt_r s_r fm_rl fm_rr)
  | sIZE_RATIO * size_l < size_r
  = mkBalBranch key_r elt_r (mkVBalBranch le key elt fm_l fm_rl) fm_rr

  | sIZE_RATIO * size_r < size_l
  = mkBalBranch key_l elt_l fm_ll (mkVBalBranch le key elt fm_lr fm_r)

  | otherwise
  = mkBranch 13{-which-} key elt fm_l fm_r

  where
    fm_l = BranchFM key_l elt_l s_l fm_ll fm_lr
    fm_r = BranchFM key_r elt_r s_r fm_rl fm_rr
    size_l = sizeFM' fm_l
    size_r = sizeFM' fm_r

-------------------------------------------------------------------------
--                                                                        -
-- Gluing two trees together                                            -
--                                                                        -
-------------------------------------------------------------------------
glueBal :: (LeKey key)
        -> FiniteMap key elt -> FiniteMap key elt
        -> FiniteMap key elt

glueBal le fm1 fm2 =
  if isEmptyFM' fm1
    then fm2
    else if isEmptyFM' fm2
           then fm1
           else
        -- The case analysis here (absent in Adams' program) is really to deal
        -- with the case where fm2 is a singleton. Then deleting the minimum means
        -- we pass an empty tree to mkBalBranch, which breaks its invariant.
             let (mid_key1, mid_elt1) = findMax fm1
                 (mid_key2, mid_elt2) = findMin fm2
             in
             if sizeFM' fm2 > sizeFM' fm1
               then mkBalBranch mid_key2 mid_elt2 fm1 (deleteMin le fm2)
               else mkBalBranch mid_key1 mid_elt1 (deleteMax le fm1) fm2

glueVBal :: (LeKey key)
         -> FiniteMap key elt -> FiniteMap key elt
         -> FiniteMap key elt

glueVBal le fm_l fm_r =
  if isEmptyFM' fm_l
    then fm_r
    else if isEmptyFM' fm_r
           then fm_l
           else
             let BranchFM key_l elt_l _ fm_ll fm_lr = fm_l
                 BranchFM key_r elt_r _ fm_rl fm_rr = fm_r
                 --(mid_key_l,mid_elt_l) = findMax fm_l
                 --(mid_key_r,mid_elt_r) = findMin fm_r
                 size_l = sizeFM' fm_l
                 size_r = sizeFM' fm_r
             in
               if sIZE_RATIO * size_l < size_r
               then
                 mkBalBranch key_r elt_r (glueVBal le fm_l fm_rl) fm_rr
                else if sIZE_RATIO * size_r < size_l
                    then
                      mkBalBranch key_l elt_l fm_ll (glueVBal le fm_lr fm_r)

                      -- We now need the same two cases as in glueBal above.
                    else glueBal le fm_l fm_r

-------------------------------------------------------------------------
--                                                                        -
-- Local utilities                                                      -
--                                                                        -
-------------------------------------------------------------------------

splitLT, splitGT :: Eq key => (LeKey key) -> FiniteMap key elt -> key
                    -> FiniteMap key elt

-- splitLT fm split_key  =  fm restricted to keys <  split_key
-- splitGT fm split_key  =  fm restricted to keys >  split_key

splitLT _  EmptyFM _ = EmptyFM
splitLT le (BranchFM key elt _ fm_l fm_r) split_key
  = if le split_key key
    then splitLT le fm_l split_key
    else if split_key == key
         then fm_l
         else mkVBalBranch le key elt fm_l (splitLT le fm_r split_key)

splitGT _  EmptyFM _ = EmptyFM
splitGT le (BranchFM key elt _ fm_l fm_r) split_key
  = if le split_key key
    then mkVBalBranch le key elt (splitGT le fm_l split_key) fm_r
    else if split_key == key
         then fm_r
         else splitGT le fm_r split_key

findMin :: FiniteMap key elt -> (key,elt)
findMin EmptyFM = error "FiniteMap.findMin: empty map"
findMin (BranchFM key elt _ EmptyFM _) = (key,elt)
findMin (BranchFM _   _   _ (BranchFM key_l elt_l s_l fm_ll fm_lr)_) =
      findMin (BranchFM key_l elt_l s_l fm_ll fm_lr)

deleteMin :: (LeKey key) -> FiniteMap key elt -> FiniteMap key elt
deleteMin _  EmptyFM                           = error "FiniteMap.deleteMin: empty map"
deleteMin _  (BranchFM _   _   _ EmptyFM fm_r) = fm_r
deleteMin le (BranchFM key elt _ (BranchFM key_l elt_l s_l fm_ll fm_lr) fm_r) =
  mkBalBranch key elt (deleteMin le (BranchFM key_l elt_l s_l fm_ll fm_lr))
                         fm_r

findMax :: FiniteMap key elt -> (key,elt)
findMax EmptyFM = error "FiniteMap.findMax: empty map"
findMax (BranchFM key elt _ _ EmptyFM) = (key,elt)
findMax (BranchFM _   _   _ _  (BranchFM key_r elt_r s_r fm_rl fm_rr)) =
  findMax (BranchFM key_r elt_r s_r fm_rl fm_rr)

deleteMax :: (LeKey key) -> FiniteMap key elt -> FiniteMap key elt
deleteMax _  EmptyFM                           = error "FiniteMap.deleteMax: empty map"
deleteMax _  (BranchFM _   _   _ fm_l EmptyFM) = fm_l
deleteMax le (BranchFM key elt _ fm_l (BranchFM key_r elt_r s_r fm_rl fm_rr)) =
  mkBalBranch key elt fm_l
              (deleteMax le (BranchFM key_r elt_r s_r fm_rl fm_rr))



-------------------------------------------------------------------------
--                                                                      -
--   FiniteSets---a thin veneer                                         -
--                                                                      -
-------------------------------------------------------------------------
type FiniteSet key = FM key ()
emptySet         :: (LeKey key) -> FiniteSet key
mkSet            :: Eq key => (LeKey key) -> [key] -> FiniteSet key
isEmptySet       :: FiniteSet _ -> Bool
elementOf        :: Eq key => key -> FiniteSet key -> Bool
minusSet         :: Eq key => FiniteSet key -> FiniteSet key -> FiniteSet key
setToList        :: FiniteSet key -> [key]
union            :: Eq key => FiniteSet key -> FiniteSet key -> FiniteSet key

emptySet = emptyFM
mkSet le xs = listToFM le [ (x, ()) | x <- xs]
isEmptySet = isEmptyFM
elementOf = elemFM
minusSet  = minusFM
setToList = keysFM
union = plusFM