1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
------------------------------------------------------------------------------
--- Library for representation of substitutions on first-order terms.
---
--- @author Jan-Hendrik Matthes
--- @version August 2016
--- @category algorithm
------------------------------------------------------------------------------

module Rewriting.Substitution
  ( Subst
  , showSubst, emptySubst, extendSubst, listToSubst, lookupSubst, applySubst
  , applySubstEq, applySubstEqs, restrictSubst, composeSubst
  ) where

import qualified Data.Map as Map
import Data.Tuple.Extra (both)
import Data.List        (intercalate)
import Data.Maybe       (fromMaybe)
import Rewriting.Term

-- ---------------------------------------------------------------------------
-- Representation of substitutions on first-order terms
-- ---------------------------------------------------------------------------

--- A substitution represented as a finite map from variables to terms and
--- parameterized over the kind of function symbols, e.g., strings.
type Subst f = Map.Map VarIdx (Term f)

-- ---------------------------------------------------------------------------
-- Pretty-printing of substitutions on first-order terms
-- ---------------------------------------------------------------------------

-- \x21a6 = RIGHTWARDS ARROW FROM BAR

--- Transforms a substitution into a string representation.
showSubst :: (f -> String) -> Subst f -> String
showSubst s sub = "{" ++ (intercalate "," (map showMapping (Map.toList sub)))
                    ++ "}"
  where
    showMapping (v, t) = (showVarIdx v) ++ " \8614 "  ++ (showTerm s t)

-- ---------------------------------------------------------------------------
-- Functions for substitutions on first-order terms
-- ---------------------------------------------------------------------------

--- The empty substitution.
emptySubst :: Subst _
emptySubst = Map.empty

--- Extends a substitution with a new mapping from the given variable to the
--- given term. An already existing mapping with the same variable will be
--- thrown away.
extendSubst :: Subst f -> VarIdx -> Term f -> Subst f
extendSubst m v t = Map.insert v t m

--- Returns a substitution that contains all the mappings from the given list.
--- For multiple mappings with the same variable, the last corresponding
--- mapping of the given list is taken.
listToSubst :: [(VarIdx, Term f)] -> Subst f
listToSubst = Map.fromList

--- Returns the term mapped to the given variable in a substitution or
--- `Nothing` if no such mapping exists.
lookupSubst :: Subst f -> VarIdx -> Maybe (Term f)
lookupSubst = flip Map.lookup

--- Applies a substitution to the given term.
applySubst :: Subst f -> Term f -> Term f
applySubst sub t@(TermVar v)   = fromMaybe t (lookupSubst sub v)
applySubst sub (TermCons c ts) = TermCons c (map (applySubst sub) ts)

--- Applies a substitution to both sides of the given term equation.
applySubstEq :: Subst f -> TermEq f -> TermEq f
applySubstEq sub = both (applySubst sub)

--- Applies a substitution to every term equation in the given list.
applySubstEqs :: Subst f -> TermEqs f -> TermEqs f
applySubstEqs sub = map (applySubstEq sub)

--- Returns a new substitution with only those mappings from the given
--- substitution whose variable is in the given list of variables.
restrictSubst :: Subst f -> [VarIdx] -> Subst f
restrictSubst sub vs
  = listToSubst [(v, t) | v <- vs, (Just t) <- [lookupSubst sub v]]

--- Composes the first substitution `phi` with the second substitution
--- `sigma`. The resulting substitution `sub` fulfills the property
--- `sub(t) = phi(sigma(t))` for a term `t`. Mappings in the first
--- substitution shadow those in the second.
composeSubst :: Subst f -> Subst f -> Subst f
composeSubst phi sigma = Map.union phi (Map.mapWithKey (\_ t -> applySubst phi t) sigma)