
Implementation Guide

Marc André Wittorf

Institut für Informatik, CAU Kiel, Germany

February 19, 2019

Contents
1 Runtime System 3

1.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Matching Choices . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.5 Map of Decisions . . . . . . . . . . . . . . . . . . . . . 5
1.1.6 Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Memory Management . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 updateNode :: n:Node*, l:Label, c:[Node*] -> Void 7
1.3.2 push :: s:Stack*, n:Node* -> Void, pop :: s:Stack*

-> Node*, peek :: s:Stack* -> Node* . . . . . . . . 7
1.3.3 next :: q:Queue* -> (Stack*, DM*), enqueue :: q:Queue*,

(Stack*, DM*) -> Void . . . . . . . . . . . . . . . . . 7
1.3.4 ensureHasChoiceId :: n:Node* . . . . . . . . . . . . 7
1.3.5 pull :: n:Node*, p:Int -> Void . . . . . . . . . . . 7
1.3.6 step :: s:Stack* -> Bool . . . . . . . . . . . . . . . 8
1.3.7 dispatch :: q:Queue* -> Void . . . . . . . . . . . . 9
1.3.8 run :: q:Queue* -> Void . . . . . . . . . . . . . . . 10

2 The Backend 10
2.1 (Extended) ICurry Structure . . . . . . . . . . . . . . . . . . . 11
2.2 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



3 Input/Output 13
3.1 catch and the World . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Starting an IO Action . . . . . . . . . . . . . . . . . . . . . . 14

4 External Functions 14
4.1 Prelude.unshare :: a -> a . . . . . . . . . . . . . . . . . . 14
4.2 Prelude.apply :: (a -> b) -> a -> b and similar . . . . 15
4.3 (Prelude.=:=) :: a -> a -> Bool . . . . . . . . . . . . . . 15
4.4 (Prelude.$!!) :: (a -> b) -> a -> b and toNF :: a

-> a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5 Prelude.readFile :: String -> IO String . . . . . . . . . 16
4.6 The Global Module . . . . . . . . . . . . . . . . . . . . . . . 16
4.7 IO.Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2



This document shall give as much help as possible to implement a new back-
end on top of the ICurry intermediate format. It includes descriptions for all
necessary functions that make up a unoptimized and slow but still complete
runtime system, a description on how to translate ICurry constructs and how
to implement some of the more complex external functions.

1 Runtime System
The runtime system’s purpose is to coordinate the execution of functions with
respect to their laziness and non-determinism. It shall track all branches of
computation, cycle through them to enable some form of concurrent evalua-
tion and dispatch the correct functions.

The runtime system is an implementation of The Fair Scheme 1. It
uses a queue of stacks, each representing a branch in the non-deterministic
computation.

In this document, we give an abstract API, which can hopefully serve as
a guide on how this runtime system could be implemented in any language.
We try to keep it language-agnostic, favoring (semi-)formal or informal de-
scriptions over constructs which may be influenced by some programming
languages being absent from others.

1.1 Data Structures

The complete program state is one big, directed graph. Many operations deal
with a single node and its direct children, so the chosen data structure should
allow to access this kind of information cheaply. There are no operations,
which deal with all nodes or all edges at once, so a direct implementation of
the usual mathematical definition of a graph using a set of vertices and a set
of edges is not recommended. A faster approach would likely be to encode
all outgoing edges directly into each node. While the number of children
theoretically is not limited, a suitably high maximum number of children
may be selected. This is reasonable as there will never be more children than
the arity of a function or constructor. A number of arguments that high is
not expected in any program.

This section highlights the important parts of this graph and some struc-
tures which hold information used to correctly and efficiently transform this

1Sergio Antoy and Andy Jost: Compiling a Functional Logic Language: The Fair
Scheme. In: Logic-Based Program Synthesis and Transformation, 23rd International Sym-
posium, LOPSTR 2013, Madrid, Spain, September 18-19, 2013, Revised Selected Papers.
DOI 10.1007/978-3-319-14125-1_12
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graph.

1.1.1 Node

A node provides the identity for a (sub-)term. This means that evaluating its
represented term will not create a new node, but rather update this existing
one. Hence, a node needs to be mutable. In addition to its children, it
needs to encode a label. This label determines what kind of term this node
represents. It can be one of the following:

1. A failure.

2. A function call.

3. A constructor call.

4. A literal.

5. A choice.

Function calls, constructor calls and literals also need to encode, which
function or constructor is called or which literal is meant. For functions,
this can be achieved by either adding a reference to the function, using a
function pointer, callable object or similar mechanism, or by using a custom
dispatcher and some function identifiers. Constructors need to include their
type-unique identifier. If the node is labeled to contain a literal, this literal is
to be included. Nodes containing a choice additionally need a mechanism to
match multiple choice nodes representing the same choice. This will further
be explained in section 1.1.3.

The runtime system needs to be able to differentiate between a function
call and a constructor. However, literals can be seen as a set of constructors
and thus a differentiation between a constructor call and a literal is not
strictly needed, but may be convenient in many places.

1.1.2 Edge

Edges need to encode a source and a target node. Also, edges are sorted as
seen from the outgoing node. There are no labels or additional information.
Thus, a useful representation for edges is to include a list of all child nodes
into each node.
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1.1.3 Matching Choices

When doing a pull-tab step in the presence of shared nodes, single nodes have
their label copied. While this is not a problem for the other types of labels, it
eventually causes all choice nodes to be copied into completely independent
nodes. This manifests as a run-time choice semantic, which is not desired.
The solution is to mark all copies of a choice as belonging together and to
make the same decision for each of these nodes.

A simple mechanism for doing this is to include an incrementing integer
as choice identifier into a choice-labeled node. This choice identifier is equal
for all nodes representing the same choice and different between any two
nodes belonging to different choices. However, it may be convenient to as-
sign these identifiers lazily. By that we avoid having to pass a the mechanism
for obtaining new identifiers to all parts of the program but rather lets a few
functions in the runtime system deal with organizing these identifiers. Fur-
thermore, lazy assignments reduce wasting identifiers on choices which will
never be evaluated. These identifiers are often a finite resource, so avoiding
waste is desirable.

1.1.4 Stack

The stack, or rather a stack, is a classic stack over references to nodes. It is
not necessary for correctly implementing the runtime system, as its informa-
tion can staightforwardly be computed by walking the graph. However, it is
one of the most important parts for making the runtime system efficient.

1.1.5 Map of Decisions

As hinted at in section 1.1.3, for nodes representing the same choice the same
decision has to be made. Thus, we need to keep the information which way
each choice was decided. If the matching is done using the proposed choice
identifiers, this information can be held as a set of {(c, n) | c ∈ N, n ∈ N},
where c shall be the choice identifier and n the position of the chosen child.
Preferably, this data structure shall allow fast lookup by the choice id, so a
structure called map in many languages is a good fit.

1.1.6 Queue

The queue, being the main component of a breadth-first search in the graph
is the core mechanism to achieve computational completeness within non-
deterministic programs.
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It shall contain pairs of a stack (see 1.1.4) and a decision map (see 1.1.5).
As this structure is a queue, taking from one end and inserting at the other
end should be fast. Other operations are not needed to implement the core
of the runtime system. Some more advanced mechanisms like the concurrent
and (Curry: (&) :: Bool -> Bool -> Bool) or encapsulated search may
want to have finer control of the queue. However, this is currently not in the
scope of this document.

1.2 Memory Management

The runtime system constantly updates a graph by adding new nodes, cre-
ating links between existing nodes and breaking these links. As it does not
define, when a node may be discarded, there needs to be a system that can
detect whether a node is still in use or can be freed from memory. Simple
reference counting is not enough for this task, as the graph is allowed to
contain cycles which can be discarded at once, and there is no point where
these cycles could be broken using weak references.

Rather, a complete system for garbage collection is needed. If the target
language itself relies on a garbage collector, it is wise to utilize this for our
data structures. If the target language requires explicit memory manage-
ment, a full garbage collector must to be implemented for nodes. It needs to
be able to detect stale cycles and free them.

1.3 Procedures

Now we will give some procedures that form the runtime system when im-
plemented as described. Depending on the target language, some of these
are just different names for built-in functions dealing with data structures.

All procedures are given as name :: arguments -> return-type, with
argument being a comma-separated list of argument definitions. An ar-
gument is given as name:type. A type can be one of the data structures
described above, a base type such as Int or Bool, a tuple of two types, given
as (type1, type2), a list of a type, denoted as [type], or a type with a
hint that data shall be given by reference type*.

Depending on the procedure, being marked as pass-by-reference has at
least one of two implications for an argument or return value. Modifying the
argument shall modify the whole state (sometimes called an out-argument).
Or some data shall be referenced from somewhere else (sharing). Thus, all
reference-marked types shall adhere to some reference-semantics.

Not being marked as reference, however, does not require passing by
value. Those pieces of data may be passed by reference as well, if this holds
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out the prospect of faster execution.
For brevity, the decision map will be abbreviated as DM in type signatures.

1.3.1 updateNode :: n:Node*, l:Label, c:[Node*] -> Void

updateNode shall write the label l into the node n, disconnect all child nodes
from n and then make all nodes in c children of n.

1.3.2 push :: s:Stack*, n:Node* -> Void, pop :: s:Stack* -> Node*,
peek :: s:Stack* -> Node*

push, pop and peek shall be standard stack operations.

1.3.3 next :: q:Queue* -> (Stack*, DM*), enqueue :: q:Queue*, (Stack*,
DM*) -> Void

next and enqueue shall return the next element at one end of a queue, while
removing it from the queue, or respectively insert an element at the other
end of a queue.

1.3.4 ensureHasChoiceId :: n:Node*

ensureHasChoiceId uses a global supply of identifiers to assign one to a
choice-labeled node, if this node does not yet have an identifier.
It does not need to check if the passed node is a choice, as it will only be
called on choices. It shall execute the following:

if n.choice_id is <unset> then
n.choice_id← nextId;
nextId← nextId+ 1;

end

1.3.5 pull :: n:Node*, p:Int -> Void

pull executes a pull-tab step. This is an operation that pulls a choice towards
the root of an expression. Instead of passing the choice-labeled node to this
procedure, its arguments are a parent node and a position p. A node can
be referenced from multiple positions, so a position is strictly required to
correctly determine, over which edge this pull-tab step shall be executed
over.
pull shall execute the following:
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s← n.label;
cs← n.children;
c← cs[p];
ensureHasChoiceId(c);
cid← c.choice_id;
n.label← <choice>;
n.choice_id← cid;
n.children← [];
forall i← c.children do

n′ ← new Node;
n′.label← s;
n′.children← copy of cs;
n′.children[p]← i;
n.children← n.children++[n′];

end

1.3.6 step :: s:Stack* -> Bool

step does a single step towards the Head Normal Form.
It shall execute the following:
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n← pop(s);
if n.label is constructor or n.label is literal then

return |s| > 0;
end
if n.label is <fail> then

return False;
end
if n.label is function then

f ← n.label;
r ← f(n);
if r is <no_argument_needed> then

push(s, n);
return True;

end
if n.children[r] is <choice> then

pull(n, r);
push(s, n);

end
if n.children[r] is function then

push(s, n);
push(s, n.children[r]);

end
return True;

end
if n.label is <choice> then

return True;
end
return False;
step’s return value indicates whether the runtime system shall enqueue

this nondeterministic branch again. A return value of False shows that this
branch requires the head-normal form of a node that is a failure, and thus is
a failure itself.

1.3.7 dispatch :: q:Queue* -> Void

dispatch is the main procedure coordinating the execution.
It shall execute the following:
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(s,m)← next(q);
n← peek(s);
if n.label is <choice> and |s| = 1 then

ensureHasChoiceId(n);
b← m[n.choice_id];
if b is <not_found> then

for (i, n′)← zip([0..], n.children) do
m′ ← copy of m;
m′[n.choice_id]← i;
s′ ← new Stack;
push(s′, n′);
enqueue(q, (s′,m′));

end
end
else

updateNode(n, n.children[b]);
enqueue(q, (s,m));

end
end
else

r ← step(s);
if r then

enqueue(q, (s,m));
end

end

1.3.8 run :: q:Queue* -> Void

run shall repeatedly call dispatch (see 1.3.7) as long as the queue is non-
empty:

while |q| > 0 do
dispatch(q);

end

2 The Backend
Most of the work necessary for translating a Curry program to a new target
language is already done by the curry-frontend and the transformations from
the icurry package. The emitted ICurry format is designed to be structured
imperatively and shall enable a sufficiently easy translation to the desired
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target language by requiring only slightly more logic than what is needed for
a pretty printer. Furthermore, the Extended ICurry format executes some
more transformations on top of the ICurry representation, which only make
implementing the actual backend a little more straightforward.

2.1 (Extended) ICurry Structure

An (Extended) ICurry program consists of four parts: a module name, a
list of imported modules, a list of declared data types and a list of declared
functions.

Apart from the module name, all these pieces of information should be
needed to emit a complete program. The module name, however, may be
required for some target languages to help naming the module or single func-
tions.

The import list is a comprehensive list of all modules used in this module.
Every function or datatype that is referenced in this module is defined either
in this module or in one of the modules in this list. Still, this list may contain
unused modules, as there is currently no mechanism to prune imported but
unused modules.

2.2 Data Types

Data type declarations have a name, a number of type variables and a number
of constructors. Every data type shall be compiled into a generator function.

A generator function looks just like any other function and it is used ex-
actly the same. Its arguments arise from the data type’s type arguments.
They are used to parameterize this generator by passing an appropriate gen-
erator for every type argument.

The generator never requires the head-normal form of any argument. It
shall only set its node to a choice. This choice shall contain one constructor
call for every constructor of this type. The constructors’ arguments are
determined as follows:

If a type variable is referenced in the constructor’s signature, a function
call to the Prelude.unshare function, with the variable as only argument,
shall be passed. unshare will be explained in section 4.1. If a type construc-
tor is given instead, a function call to this data type’s generator is inserted.
Its arguments are found by doing this recursively.
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2.3 Functions

A function is either compiled or defined externally. If a function is defined
externally, the external implementation shall be called and no further action
is necessary.

Translating a function body is the more interesting case. All specified ar-
guments shall be unpacked from the node the function operates on. Names for
variables in the target program can directly be derived from each IVarIndex,
for example by converting the index to a string and prepending a letter. They
are meant to be sufficiently unique.

Then, the block defines the actual logic happening in the function. All
blocks carry a number of local variables and a number of assignments. Before
dealing with the logic specific to each different block, all these local variables
shall be declared and defined to an empty node. This is needed because these
new variables can be used before they are assigned, for example to allow
cyclic data structures. Then it shall process each assignment by assigning
the structure arising from the given expression to the given variable.

A simple block shall now set the contents of the current node to the graph
structure constructed from the expression.

A case block shall examine the specified variable. If it is not in head-
normal form, the function aborts by returning the position of this variable
in the function’s argument list. The variable is guaranteed to always be a
function argument. If it is in head-normal form, it shall find the correct
branch based on the constructor in this variable. Then it shall process the
block given in this branch.

For a case differentiation over literals it may happen that no branch
matches. In this case the node shall be set to a failure.

For a differentiation over constructors of a data type, this can never hap-
pen. All cases resulting in a failure are given explicitly. As constructors
can have arguments, these must be unpacked to the variables by their posi-
tion just like function arguments, before the block specified in this branch is
processed.

Evaluating expressions builds a subgraph. ILit, IFCall, ICCall and IOr
(respectively their IE-counterparts) generate new nodes labeled accordingly.
IVar (respectively IEVar) just gives an existing node which is referenced by
a variable.
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3 Input/Output
As the described method of evaluation is lazy, the order of evaluation of every
subterm is not set by the order of their appearance in the source program.
While this is not a problem for pure functions, IO requires the ability to
specify the order of execution. This is solved using the IO monad, which
enforces every action to be executed in order. To do this, an implicit world
object is passed between IO actions that are being executed. This world could
be seen as actually containing all data for input and output, allowing to see
IO actions as pure functions for theoretical arguments. In practice, however,
this world object contains much less, nothing in fact. It is a mere dummy for
guarding the access to the actual world (the user, file system, network, etc.)
and hence, can be represented by the smallest applicable type.

An action in the source language with type IO a can be implemented as
a function () -> (a,()), with the world being represented through a unit
type. It is important to only execute the action and produce a result, once
the world argument actually is evaluated to head-normal form. This small
detail ensures the correct evaluation order.

As IO actions are composed using Prelude.>>=$ :: IO a -> (a ->
IO b) -> IO b, this function has to properly pass the world between the
two actions. A usual implementation would be to pass the world to the first
action, wait for its evaluation to head-normal form, extract the world from
the action’s result, pass this world to the second action and then make this
second action’s result the whole result.

Although at first glance this may look like an additional translation step,
all basic IO actions are defined as external functions and thus are not trans-
lated at all. IO actions defined in the source program are always composed
from these basic actions using the previously explained bind operator, which
takes care of handling the world.

3.1 catch and the World

In practice, IO actions can throw errors. In the source language, these errors
have to be handled using the function catch :: IO a -> (IOError -> IO
a) -> IO a. To properly allow this, it may be customary to have the world
slightly more complex than the unit type. An equivalent of data IOWorld
= WorldOK | WorldError IOError allows carrying an additional error.

>>=$ then has to immediately return this error when receiving a WorldError
from the first action. catch basically does the opposite of >>=$: It imme-
diately returns if no error is seen and prepares and starts the second action
(the error handler) if it receives an error from the action.
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3.2 Starting an IO Action

Starting an IO action is required if the main function is an IO action or when
invoking unsafePerformIO. Then, the action shall be copied, this copy shall
receive a fresh world object and afterwards it can be assigned to a node,
ready to be evaluated. In the case of unsafePerformIO, the action may not
be directly assigned to the node that previously contained the call to this
unsafe function. Instead it must be wrapped in another function that will
extract the actual result from the world structure. Copying the action is
necessary, as an action may be shared and every call needs to attach its own
world object. Modifying the shared action duplicates a world and thus loses
the enforcement of evaluation order.

4 External Functions
Many functions that need a native implementation in the target language are
not very complex. Just by looking at their signature and maybe their docu-
mentation, one should be able to immediately have an idea how to implement
them.

As there are many externally defined functions in the curry-base, this
section will only focus on a few more complicated functions.

Most externally defined functions do not need to handle unevaluated
nodes. Small stubs in the curry libraries ensure that these external im-
plementations are only called on nodes which have already been evaluated
to (head-)normal form.

4.1 Prelude.unshare :: a -> a

unshare is the only function added by the translation to ICurry. As there is
no external documentation for this function, it is included in this document.

Its purpose is to separate a choice node from all other nodes with its
choice identity. This is necessary to enable proper semantics for choices in
the presence of generators. Without splitting the identities between a passed
generator and its use, non-deterministic branches between different free vari-
ables would be shared. Splitting these identities reduces these sharings to
exactly those expected by call-time semantics.

Usually, unshare will create a shallow copy of the node which is the only
argument that unshare is called on. The copy will reference the same nodes
as children and no children are changed or copied. unshare will reset the
copy’s choice tag (see 1.1.3), so it will be given a new one on occasion. This
copy is the result of this function.
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4.2 Prelude.apply :: (a -> b) -> a -> b and similar

apply looks like the identity function on a functional type. It is used, how-
ever, to construct a (potentially partial) function/constructor call from a
partial function/constructor call and an argument.

The partial application needs to be copied to a new node. This new node
can now be modified by adding a new child reference to the new argument.
Copying is necessary, as a partial application may be used multiple times with
different arguments, so the original partial application must be preserved.

Several other functions use (partial) applications in their mechanism (for
example $!, $#). They can either use the apply function or just replicate
this process in place.

4.3 (Prelude.=:=) :: a -> a -> Bool

(=:=) does a few things at the same time. Not only does it compare two
data terms, but it also takes shortcuts by binding free variables and thus
avoids lots of useless work.

The comparison recursively descends both arguments. This, however,
may not be done strictly in the function body of (=:=), as one of the data
terms may be infinite or may contain unevaluated nodes. Strictly evaluating
an inifinite structure would lead to an infinite computation in this function.
This would immediately break the completeness of the Fair Scheme. An
unevaluated node cannot be compared but must be evaluated first. Since a
function can only request to evaluate those nodes which are function argu-
ments, this would be a problem.

Instead, this function only compares both data terms’ constructors, fail-
ing on inequality, and then returns a new subgraph, which represents the
conjunction of the structural equalities of each argument. This conjunction
shall preferably be realized with a mechanism like the one used in the func-
tion &, so the comparison is more like a breadth-first search than a depth-first
search.

Binding a free variable is unique to this function. If one of this function’s
arguments is a generator, the generator’s node can unconditionally be up-
dated so that it bears the same label and children as the other argument.
This requires the ability to distinguish a simple choice from a generator, as
generators are choices as well. In this, generators are special choices and
could (only for use in this function) be marked to be suitable for unification.
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4.4 (Prelude.$!!) :: (a -> b) -> a -> b and toNF ::
a -> a

($!!) evaluates the argument to normal form before passing it to the func-
tion. This can easily be implemented by using a helper function toNF, which
is not part of a Curry library. f $!! x then only has to request the evalua-
tion of toNF x to head-normal form, which can easily be achieved by passing
this term as an argument to a helper function, which then can request the
evaluation to head-normal form.

toNF then has to ensure that it only ever produces a head-normal form,
if the result is also in normal form. This is achieved by recursively using this
function and waiting for all arguments to be processed before constructing
the result. In other words, this function can be seen to emulate a strict
identity function in a lazy runtime system.

4.5 Prelude.readFile :: String -> IO String

While writeFile is easy to implement, because it only receives completely
evaluated arguments and may do all the work in a single go, readFile should
read lazily.

This can be done by obtaining a handle from opening the file, and then
returning an applied function call to a read :: Handle -> String func-
tion as IO result. This is still a correct implementation, as the mechanism of
sharing avoids trying to read the same position multiple times, although the
function modifies the handle and, thus, is not purely functional. read then
can be implemented as the equivalent of

if handle is eof then
close handle;
return [];

end
else

c← readChar handle;
return c : read handle;

end
close and readChar denote the native functions to close a file handle and to
get the next character from an open file handle.

4.6 The Global Module

The module Global allows to define and allow constructs that behave like
global variables in imperative languages. While their usage is safe as reading
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and writing are performed in IO actions, global variables are defined using
the pure function global. This is a problem, because global definitions are
never shared in Curry 2. No naive implementation will allow effective writing
to a global variable, as a new instance is created everytime the global variable
is referenced, which makes it impossible to read a modified value. Also there
is no argument which would allow the global function to distinguish between
different global variables.

To solve this, the translation can introduce a special handling for func-
tions which are a mere call to the global function. These functions shall
not be translated to a single function, but rather into two parts. The first
part is an explicit subgraph containing the starting value (or data read from
persistent storage), saved in the equivalent of a global variable. The second
part is a function which simply returns a reference to this global structure.

This way, every reference to the global variable’s definition will eventually
be evaluated to the same structure in memory. A write to this variable can
then be reflected in later reads from this global variable.

4.7 IO.Handle

The IO module defines a data type Handle. It also introduces functions to
access files and file-like objects making use of this data type.

Other modules, especially the Socket module, however, also use handles.
Consequently the IO functions working on a Handle not only need to be able
to access files, but also other resources which may require different low-level
interfaces. Thus, the Handle likely needs a mechanism to dispatch the correct
functions for dealing with a handle at runtime.

2Michael Hanus (ed.): Curry: An Integrated Functional Logic Language (Vers. 0.9.0).
2016. Available at http://www.curry-language.org, last accessed: 2018-09-16
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