1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
------------------------------------------------------------------------------
--- An implementation of term graphs used by the ICurry interpreter.
---
--- @author Michael Hanus
--- @version January 2021
------------------------------------------------------------------------------

module ICurry.Graph
 where

import Data.List      ( intercalate, nub )
import System.IO      ( hPutStr, hClose )

import Data.GraphViz as Dot
import System.IOExts  ( connectToCommand )
import System.Process ( system )

------------------------------------------------------------------------------
--- Views a dot graph as PDF.
--- If the first argument is `(Just c)`, the command `c`
--- (e.g., "evince" or "okular --noraise") to view the
--- generated PDF is started in background, otherwise the viewer is not invoked.
--- The second argument is the step number and used to index the output files
--- if it is positive.
viewDot :: Maybe String -> Int -> DotGraph -> IO ()
viewDot withviewer num =
  view . showDotGraphWithAttrs "ordering=out;\nfontsize=10;"
 where
  view dottxt = do
    let outpdf = "ICURRYDOT" ++ (if num>0 then show num else "") ++ ".pdf"
    dothdl <- connectToCommand $ "dot -Tpdf -o" ++ outpdf
    hPutStr dothdl dottxt
    hClose dothdl
    maybe (return ())
          (\c -> do
             system $ unwords [c, outpdf, "2> /dev/null", "> /dev/null", "&"]
             return ())
          withviewer

------------------------------------------------------------------------------
-- A simple implementation of graphs representing ICurry expressions
-- with sharing.
-- This implementation can be made more efficient by using finite maps
-- and "pointers" from target to source nodes (for the replacement operation).

-- Graph nodes are identified by integers.
type NodeID = Int

-- Choice identifiers are implemented as integers.
type ChoiceID = Int

-- Representation of partial function or constructor calls
-- where the number of missing arguments is provided.
data PartCall = PartFuncCall Int | PartConsCall Int
 deriving Show

-- A graph node is a function, constructor, choice, or free node.
-- The latter represents unbound variables.
data Node = FuncNode   String   [NodeID]
          | ConsNode   String   [NodeID]
          | PartNode   String   PartCall [NodeID]
          | ChoiceNode ChoiceID NodeID NodeID
          | FreeNode
 deriving Show

-- The label of a node.
nodeLabel :: Node -> String
nodeLabel (FuncNode f _)       = f
nodeLabel (ConsNode f _)       = f
nodeLabel (PartNode f _ _)     = f
nodeLabel (ChoiceNode cid _ _) = "?" ++ show cid
nodeLabel FreeNode             = "free"

-- Add an argument node to a node representing a partial call.
addPartialArg :: Node -> NodeID -> Node
addPartialArg pnode arg = case pnode of
  PartNode fc (PartFuncCall m) args ->
    let nargs = args ++ [arg]
    in if m == 1
         then FuncNode fc nargs
         else PartNode fc (PartFuncCall (m-1)) nargs
  PartNode fc (PartConsCall m) args ->
    let nargs = args ++ [arg]
    in if m == 1
         then ConsNode fc nargs
         else PartNode fc (PartConsCall (m-1)) nargs
  _ -> error "addPartialArg: node does not contain partial call"


-- A graph is implemented as a list of nodes together with a maximum NodeID.
data Graph = Graph [(NodeID,Node)] NodeID
 deriving Show

-- An empty graph contains only a "null" node with node id 0.
emptyGraph :: Graph
emptyGraph = Graph [(0, ConsNode "null" [])] 1

-- Looks up a node in a graph (where redirections are considered).
lookupNode :: NodeID -> Graph -> Node
lookupNode ni (Graph nodes _) =
  maybe (error $ "Node with id `" ++ show ni ++ "` not found!")
        id
        (lookup ni nodes)

-- Returns maximum node id of a graph.
maxNodeID :: Graph -> NodeID
maxNodeID (Graph _ m) = m

-- Adds a new node in a graph.
addNode :: Node -> Graph -> (Graph,NodeID)
addNode node (Graph nodes mx) =
  (Graph (nodes ++ [(mx,node)]) (mx + 1), mx)

-- Updates a node in a graph with new node information.
updateNode :: Graph -> NodeID -> Node -> Graph
updateNode (Graph nodes mx) nid newnode = Graph (map update nodes) mx
 where
  update (ni, n) | ni == nid = (ni, newnode)
                 | otherwise = (ni, n)

-- Replaces a node `n1` in a graph by another node `n2` already contained
-- in the graph.
-- Thus, all edges with target `n1` are redirected to target `n2`.
-- Furthermore, node `n1` is deleted from the graph since it is garbage.
replaceNode :: Graph -> NodeID -> NodeID -> Graph
replaceNode (Graph nodes mx) oldnid newid =
  Graph (filter ((/= oldnid) . fst) . map redirect $ nodes) mx
 where
  redirect (ni, n) = (ni, redirectTargets n)

  redirectTargets (FuncNode f ns)      = FuncNode f (map redirectTarget ns)
  redirectTargets (ConsNode f ns)      = ConsNode f (map redirectTarget ns)
  redirectTargets (PartNode f n ns)    = PartNode f n (map redirectTarget ns)
  redirectTargets (ChoiceNode c n1 n2) =
    ChoiceNode c (redirectTarget n1) (redirectTarget n2)
  redirectTargets FreeNode             = FreeNode

  redirectTarget ni = if ni == oldnid then newid else ni


-- Shows the expression represented by the graph starting with a given node.
-- In order to visualize sharing, shared subexpressions are shown
-- as let expressions.
showGraphExp :: Graph -> NodeID -> String
showGraphExp g nid = showExp [] 10 nid
 where
  showExp lets d ni | d == 0    = "..."
                    | otherwise = showNExp (lookupNode ni g)
   where
    showNExp FreeNode             = "_x" ++ show ni
    showNExp (ConsNode f args)    = showNExp (FuncNode f args)
    showNExp (PartNode f _ args)  = showNExp (FuncNode f args)
    showNExp (ChoiceNode c n1 n2) = showNExp (FuncNode ('?' : show c) [n1,n2])
    showNExp (FuncNode f args)
      | null args = f
      | otherwise
      = "(" ++
        (if null arglets
           then ""
           else "let {" ++
                intercalate " ; " (map showLetDecl arglets) ++ "} in ") ++
        showCall (map (\a -> if a `elem` alllets
                               then showVar a
                               else showExp alllets (d-1) a) args) ++
        ")"
     where
      showCall cargs =
        if isInfixOp f
          then case cargs of
                 [a1,a2] -> unwords [a1,f,a2]
                 _       -> unwords (('(' : f ++ ")") : cargs)
          else unwords (f : cargs)
       where
        isInfixOp = all (`elem` "!@#$%^&*+-=<>?./|\\:")

      arglets = nub (concatMap
                       (\a -> let occs = occursInGraphExp d a ni
                              in if occs < 2 || isConst a then [] else [a])
                       (filter (`notElem` lets) args))

      alllets = arglets ++ lets

      showLetDecl a = showVar a ++ " = " ++ showExp alllets (d-1) a

  showVar ni = 'x' : show ni

  isConst ni = case lookupNode ni g of
        ConsNode _ [] -> True
        _             -> False

  -- count occurrences of a node `ni` in graph rooted by `nr`
  occursInGraphExp d ni nr
    | d == 0 = 0
    | otherwise
    = (if ni==nr then 1 else 0) +
      case lookupNode nr g of
        FuncNode _   args  -> foldr (+) 0 (map (occursInGraphExp (d-1) ni) args)
        ConsNode _   args  -> foldr (+) 0 (map (occursInGraphExp (d-1) ni) args)
        PartNode _ _ args  -> foldr (+) 0 (map (occursInGraphExp (d-1) ni) args)
        ChoiceNode _ a1 a2 -> occursInGraphExp (d-1) ni a1 +
                              occursInGraphExp (d-1) ni a2
        FreeNode           -> 0


-- Transforms a graph (w.r.t. given node attributes) into a dot graph.
-- If the third argument is True, node ids will be shown in the node labels.
-- If the fourth argument is True, all nodes are shown, otherwise
-- only nodes reachable from the node list in the second argument are shown.
graphToDot :: Graph -> [(NodeID,[(String,String)])] -> Bool -> Bool -> DotGraph
graphToDot gr ndattrs withnids showall =
  let sgraph = if showall then gr
                          else reachableGraph gr (map fst ndattrs)
  in fullGraphToDot sgraph ndattrs withnids

-- Transforms a graph (w.r.t. given node attributes) into a dot graph.
-- If the third argument is True, node ids will be shown in the node labels.
fullGraphToDot :: Graph -> [(NodeID,[(String,String)])] -> Bool -> DotGraph
fullGraphToDot (Graph nodes _) ndattrs withnids =
  dgraph "Graph" (concatMap toNode nodes) (concatMap toEdges nodes)
 where
  toNode (nid,n) = [Dot.Node (show nid) ([("label", ndlabel)] ++ addAttrs)]
   where
    ndlabel  = nodeLabel n ++ if withnids then " [" ++ show nid ++ "]" else ""
    addAttrs = maybe [] id (lookup nid ndattrs)

  toEdges (nid, FuncNode _   ns   ) = addEdges nid ns
  toEdges (nid, ConsNode _   ns   ) = addEdges nid ns
  toEdges (nid, PartNode _ _ ns   ) = addEdges nid ns
  toEdges (nid, ChoiceNode _ n1 n2) = addEdges nid [n1,n2]
  toEdges (_  , FreeNode          ) = []

  addEdges src ns =
    map (\ (i,n) -> Dot.Edge (show src) (show n) [("label",show i)])
        (zip [1..] ns)

-- "Garbage collection" on a graph: remove all nodes (and their outgoing edges)
-- which are not reachable from a given list of nodes.
reachableGraph :: Graph -> [NodeID] -> Graph
reachableGraph (Graph nodes mx) initnids =
  let rnodes = reachableNodes initnids
  in Graph (filter ((`elem` rnodes) . fst) nodes) mx
 where
  reachableNodes nids =
     let newts = nub . filter (`notElem` nids) . concatMap targets $ nids
     in if null newts then nids else reachableNodes (newts ++ nids)
   where
    targets ni =
      maybe (error $ "Node with id `" ++ show ni ++ "` not found!")
            (\nd -> case nd of FuncNode _ ns      -> ns
                               ConsNode _ ns      -> ns
                               PartNode _ _ ns    -> ns
                               ChoiceNode _ n1 n2 -> [n1,n2]
                               FreeNode           -> [])
            (lookup ni nodes)

------------------------------------------------------------------------------