
opt-parse - An Advanced Command Line Parser
for Curry
opt-parse is an advanced command line parser for Curry. It features support for
options with and without values (i.e. flags), positional arguments and commands
that can define their own sub-parsers. It borrows heavily from Paolo Capriotti’s
Haskell package optparse-applicative and Curry’s GetOpt module.

You use opt-parse by declaring a parser specification and then running that
parser specification on a command line. A parser specification is made up from
individual parsers for options, flags, position arguments and commands. Each
individual parser results in an arbitrary value, though all parsers in a parser
specification must result in values of the same type.

A Simple Example
A simple command line parser example might look like this:

cmdParser = optParser $
option (\s -> readInt s)

(long "number"
<> short "n"
<> metavar "NUMBER"
<> help "The number.")

<.> arg (\s -> readInt s)
(metavar "NEXT-NUMBER"
<> help "The next number.")

main = do
args <- getArgs
parseResult <- return $ parse (intercalate " " args) cmdParser "test"
putStrLn $ case parseResult of

Left err -> err
Right v -> show v

This defines a parser that supports a number option and requires a single
positional argument. Both values are parsed into an integer. The parse function
is called with the command line as a single string, the parser specification and
the name of the current program. It results in either a Left if there was a parse
error or a Right with the list of parse results. Running test --help prints out
usage information:

test NEXT-NUMBER

-n, --number NUMBER The number.

NEXT-NUMBER The next number.

1

If we run test --number=5 2, we get the list of parse results:

[2, 5]

metavar and help are modifiers that can be applied to any argument parser,
command, option, flag or positional. The help text is what is printed in the
detailed usage output, the metavar is the placeholder to be printed for the
argument’s value in the usage output. The optional modifier can also be
applied to all argument types, although flags and options are already optional
by default.

The long and short modifiers are specific to options and flags.

Right now, the result of our parser is a list of the individual parse results. Usually,
we want our parse result to be a single value, for example a Curry data type
such as this:

data Options = Options
{ number :: Int
, nextNumber :: Int }

To parse a command line to an Options value, we return functions from our
individual parsers instead of integers:

cmdParser = optParser $
option (\s a -> a { number = readInt s })

(long "number"
<> short "n"
<> metavar "NUMBER"
<> help "The number.")

<.> arg (\s a -> a { nextNumber = readInt s })
(metavar "NEXT-NUMBER"
<> help "The next number.")

The result of a successful parse will now be a list of functions that change an
Options value. We can fold this list onto a default Options:

applyParse :: [Options -> Options] -> Options
applyParse fs = foldl (flip apply) defaultOpts fs
where
defaultOpts = Options 0 0

main = do
args <- getArgs
parseResult <- return $ parse (intercalate " " args) cmdParser "test"
putStrLn $ case parseResult of

Left err -> err
Right v -> show $ applyParse v

Executing test --number=5 1 results in:

2

(Options 5 1)

Positional Arguments and Flags
Positional arguments can be created via arg and rest. arg is a normal positional
argument which can be optional or mandatory. rest is a positional argument
that consumes the rest of the command line as-is. Positional arguments are
expected in the order they occur in the parser definition.

flag can be used to create flag arguments. A flag argument expects no value.

Commands
In addition to options, flags and positional arguments, opt-parse also includes
support for commands. A command is a positional argument that dispatches
to sub-parsers depending on its value. If we have a calculator program that
supports addition and multiplication, we could model its command line interface
using commands:

data Options = Options
{ operation :: Int -> Int -> Int
, operandA :: Int
, operandB :: Int }

cmdParser = optParser $
commands (metavar "OPERATION")

(command "add" (help "Adds two numbers.") (\a -> a { operation = (+) })
(arg (\s a -> a { operandA = readInt s }

(metavar "OPERAND-A"
<> help "The first operand.")

<.> arg (\s a -> a { operandB = readInt s }
(metavar "OPERAND-B"
<> help "The second operand."))

<|> command "mult" (help "Multiplies two numbers.") (\a -> a { operation = (*) })
(arg (\s a -> a { operandA = readInt s }

(metavar "OPERAND-A"
<> help "The first operand.")

<.> arg (\s a -> a { operandB = readInt s }
(metavar "OPERAND-B"
<> help "The second operand.")))

The corresponding usage output for test run with no further arguments is:

test OPERATION

Options for OPERATION
add Adds two numbers.
mult Multiplies two numbers.

3

If we choose an operation, e.g. add, the output is:

test add OPERAND-A OPERAND-B

OPERAND-A The first operand.
OPERAND-B The second operand.

4

	opt-parse - An Advanced Command Line Parser for Curry
	A Simple Example
	Positional Arguments and Flags
	Commands

