1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
|
module Data.Nat
( Nat(..), fromNat, toNat, add, sub, mul, leq
) where
import Test.Prop
data Nat = Z | S Nat
deriving Eq
instance Show Nat where
show n = show (fromNat n)
instance Read Nat where
readsPrec p s = map (\ (n,r) -> (toNat n, r)) (readsPrec p s)
fromNat :: Nat -> Int
fromNat Z = 0
fromNat (S n) = 1 + fromNat n
fromNat'post :: Nat -> Int -> Bool
fromNat'post _ n = n >= 0
toNat :: Int -> Nat
toNat n | n == 0 = Z
| n > 0 = S (toNat (n-1))
toNat'pre :: Int -> Bool
toNat'pre n = n >= 0
fromToNat :: Nat -> Prop
fromToNat n = toNat (fromNat n) -=- n
toFromNat :: Int -> Prop
toFromNat n = n>=0 ==> fromNat (toNat n) -=- n
add :: Nat -> Nat -> Nat
add Z n = n
add (S m) n = S(add m n)
addIsCommutative :: Nat -> Nat -> Prop
addIsCommutative x y = add x y -=- add y x
addIsAssociative :: Nat -> Nat -> Nat -> Prop
addIsAssociative x y z = add (add x y) z -=- add x (add y z)
sub :: Nat -> Nat -> Nat
sub x y | add y z == x = z where z free
subAddL :: Nat -> Nat -> Prop
subAddL x y = sub (add x y) x -=- y
subAddR :: Nat -> Nat -> Prop
subAddR x y = sub (add x y) y -=- x
mul :: Nat -> Nat -> Nat
mul Z _ = Z
mul (S m) n = add n (mul m n)
mulIsCommutative :: Nat -> Nat -> Prop
mulIsCommutative x y = mul x y -=- mul y x
mulIsAssociative :: Nat -> Nat -> Nat -> Prop
mulIsAssociative x y z = mul (mul x y) z -=- mul x (mul y z)
distMulAddL :: Nat -> Nat -> Nat -> Prop
distMulAddL x y z = mul x (add y z) -=- add (mul x y) (mul x z)
distMulAddR :: Nat -> Nat -> Nat -> Prop
distMulAddR x y z = mul (add y z) x -=- add (mul y x) (mul z x)
leq :: Nat -> Nat -> Bool
leq Z _ = True
leq (S _) Z = False
leq (S x) (S y) = leq x y
leqAdd :: Nat -> Nat -> Prop
leqAdd x y = always $ leq x (add x y)
instance Num Nat where
x + y = add x y
x - y = sub x y
x * y = mul x y
negate x = sub Z x
abs x = x
signum Z = Z
signum (S _) = S Z
fromInt x = toNat x
|