1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
|
module FlatCurryGoodies where
import Function (second)
import List (nub, union, maximum)
import Maybe (isJust)
import Utils (disjoint)
import FlatCurry.Types
progName :: Prog -> String
progName (Prog m _ _ _ _) = m
funcName :: FuncDecl -> QName
funcName (Func f _ _ _ _) = f
isExternal :: FuncDecl -> Bool
isExternal (Func _ _ _ _ r) = case r of
External _ -> True
_ -> False
hasName :: QName -> FuncDecl -> Bool
hasName qn f = funcName f == qn
constructors :: TypeDecl -> [QName]
constructors (Type _ _ _ cs) = [ c | Cons c _ _ _ <- cs ]
constructors (TypeSyn _ _ _ _) = []
maxVar :: [VarIndex] -> VarIndex
maxVar vs = maximum (0 : vs)
maxVarIndex :: Expr -> VarIndex
maxVarIndex e = maximumVarIndex [e]
maximumVarIndex :: [Expr] -> VarIndex
maximumVarIndex es = maxVar (concatMap vars es)
vars :: Expr -> [VarIndex]
vars (Var v) = [v]
vars (Lit _) = []
vars (Comb _ _ es) = foldr union [] (map vars es)
vars (Free vs e) = vs `union` vars e
vars (Or e1 e2) = vars e1 `union` vars e2
vars (Case _ e bs) = foldr union (vars e) (map inBranch bs)
where inBranch (Branch p be) = vars be `union` nub (patVars p)
vars (Let bs e) = foldr union vs (map vars (e : es))
where (vs, es) = unzip bs
vars (Typed e _) = vars e
freeVars :: Expr -> [VarIndex]
freeVars = nub . freeVarsDup
freeVarsDup :: Expr -> [VarIndex]
freeVarsDup (Var v) = [v]
freeVarsDup (Lit _) = []
freeVarsDup (Comb _ _ es) = concatMap freeVarsDup es
freeVarsDup (Free vs e) = freeVarsDup e \\\ vs
freeVarsDup (Or e1 e2) = freeVarsDup e1 ++ freeVarsDup e2
freeVarsDup (Case _ e bs) = concat (freeVarsDup e : map inBranch bs)
where inBranch (Branch p be) = freeVarsDup be \\\ patVars p
freeVarsDup (Let bs e) = concatMap freeVarsDup (e : es) \\\ vs
where (vs, es) = unzip bs
freeVarsDup (Typed e _) = freeVarsDup e
(\\\) :: [a] -> [a] -> [a]
xs \\\ ys = filter (`notElem` nub ys) xs
funcsInExps :: [Expr] -> [QName]
funcsInExps = concatMap funcsInExp
where
funcsInExp (Var _) = []
funcsInExp (Lit _) = []
funcsInExp (Comb t f es) = case t of
FuncCall -> [f | f /= prelPEVAL] ++ concatMap funcsInExp es
FuncPartCall _ -> [f | f /= prelPEVAL] ++ concatMap funcsInExp es
_ -> concatMap funcsInExp es
funcsInExp (Free _ e) = funcsInExp e
funcsInExp (Or e1 e2) = funcsInExp e1 ++ funcsInExp e2
funcsInExp (Case _ e cs) = concatMap funcsInExp (e : branchExprs cs)
funcsInExp (Let bs e) = concatMap (funcsInExp . snd) bs ++ funcsInExp e
funcsInExp (Typed e _) = funcsInExp e
noShadowing :: Expr -> Bool
noShadowing = cns []
where
cns vs ex = case ex of
Var _ -> True
Lit _ -> True
Comb _ _ es -> all (cns vs) es
Free xs e -> disjoint vs xs && cns (vs ++ xs) e
Or e1 e2 -> cns vs e1 && cns vs e2
Case _ e bs -> cns vs e && all cnsBranch bs
where cnsBranch (Branch p be) = let xs = patVars p
in disjoint vs xs && cns (vs ++ xs) be
Let ds e -> let (xs, es) = unzip ds
in disjoint vs xs && all (cns (vs ++ xs)) (e:es)
Typed e _ -> cns vs e
subExprs :: Expr -> [Expr]
subExprs e = case e of
Var _ -> [e]
Lit _ -> [e]
Comb _ _ es -> e : concatMap subExprs es
Let ds e' -> e : concatMap subExprs (e' : map snd ds)
Free _ e' -> e : subExprs e'
Or e1 e2 -> e : subExprs e1 ++ subExprs e2
Case _ e' bs -> e : concatMap subExprs (e' : branchExprs bs)
Typed e' _ -> e : subExprs e'
isSQ :: Expr -> Bool
isSQ e = isJust (getSQ e)
getSQ :: Expr -> Maybe Expr
getSQ e = case e of
Comb ct f [e'] | ct == FuncCall && f == prelPEVAL -> Just e'
_ -> Nothing
delSQ :: Expr -> Expr
delSQ = trExpr Var Lit comb Free Or Case Branch Let Typed
where
comb ct f es = let call = Comb ct f es in case getSQ call of
Just e -> e
Nothing -> call
topSQ :: Expr -> Expr
topSQ e = Comb FuncCall prelPEVAL [delSQ e]
liftSQ :: Expr -> Expr
liftSQ e = if hasSQ e then topSQ e else e
sq' :: Expr -> Expr
sq' x = case x of
Free vs e -> Free vs (sq e)
Let ds e -> Let (map (second sq) ds) (sq e)
Case ct e bs -> Case ct (sq e) (sq `onBranchExps` bs)
Comb ct qn es -> Comb ct qn (map sq es)
Or e1 e2 -> Or (sq e1) (sq e2)
_ -> sq x
sq :: Expr -> Expr
sq e = case e of
Var _ -> e
Lit _ -> e
Comb ct c es | isConsCall ct -> Comb ct c (map sq es)
Case ct (Var x) bs -> Case ct (Var x) (sq `onBranchExps` bs)
Typed e' ty -> Typed (sq e') ty
_ | isFailed e -> e
| otherwise -> topSQ e
hasSQ :: Expr -> Bool
hasSQ = trExpr (\_ -> False) (\_ -> False) comb (\_ b -> b)
(||) (\_ b bs -> or (b:bs)) (\_ b -> b)
(\ds b -> or (b : map snd ds)) (\b _ -> b)
where comb ct f bs = or ((ct == FuncCall && f == prelPEVAL) : bs)
onBranchExps :: (Expr -> Expr) -> [BranchExpr] -> [BranchExpr]
onBranchExps f = map (\ (Branch p e) -> Branch p (f e))
unzipBranches :: [BranchExpr] -> ([Pattern], [Expr])
unzipBranches [] = ([], [])
unzipBranches (Branch p e : bs) = let (ps, es) = unzipBranches bs
in (p : ps, e : es)
zipBranches ::[Pattern] -> [Expr] -> [BranchExpr]
zipBranches = zipWith Branch
branchExpr :: BranchExpr -> Expr
branchExpr (Branch _ e) = e
branchExprs :: [BranchExpr] -> [Expr]
branchExprs = map branchExpr
branchPats :: [BranchExpr] -> [Pattern]
branchPats bs = map (\ (Branch p _) -> p) bs
eqPattern :: Pattern -> Pattern -> Bool
eqPattern p1 p2 = case (p1, p2) of
(Pattern f _, Pattern g _) -> f == g
(LPattern l, LPattern m) -> l == m
_ -> False
samePattern :: [BranchExpr] -> [BranchExpr] -> Bool
samePattern bs1 bs2 = length bs1 == length bs2
&& and (zipWith eqPattern (branchPats bs1) (branchPats bs2))
findBranch :: Pattern -> [BranchExpr] -> Maybe ([VarIndex], Expr)
findBranch _ [] = Nothing
findBranch p (Branch q e : bs) | eqPattern p q = Just (patVars q, e)
| otherwise = findBranch p bs
trExpr :: (VarIndex -> a)
-> (Literal -> a)
-> (CombType -> QName -> [a] -> a)
-> ([VarIndex] -> a -> a)
-> (a -> a -> a)
-> (CaseType -> a -> [b] -> a)
-> (Pattern -> a -> b)
-> ([(VarIndex, a)] -> a -> a)
-> (a -> TypeExpr -> a)
-> Expr -> a
trExpr fVar fLit fComb fFree fOr fCase fBranch fLet fTy x
= case x of
Var v -> fVar v
Lit l -> fLit l
Comb ct c es -> fComb ct c (map f es)
Free vs e -> fFree vs (f e)
Or e1 e2 -> fOr (f e1) (f e2)
Case ct e bs -> fCase ct (f e) (map (\(Branch p be) -> fBranch p (f be)) bs)
Let bs e -> fLet (map (second f) bs) (f e)
Typed e ty -> fTy (f e) ty
where f = trExpr fVar fLit fComb fFree fOr fCase fBranch fLet fTy
isVar :: Expr -> Bool
isVar e = case e of
Var _ -> True
_ -> False
isLit :: Expr -> Bool
isLit e = case e of
Lit _ -> True
_ -> False
isConsCall :: CombType -> Bool
isConsCall c = case c of
ConsCall -> True
ConsPartCall _ -> True
_ -> False
isFuncCall :: CombType -> Bool
isFuncCall c = case c of
FuncCall -> True
FuncPartCall _ -> True
_ -> False
isPartCall :: CombType -> Bool
isPartCall c = case c of
ConsPartCall _ -> True
FuncPartCall _ -> True
_ -> False
isConstrTerm :: Expr -> Bool
isConstrTerm e = case e of
Var _ -> True
Lit _ -> True
Comb ConsCall _ es -> all isConstrTerm es
Comb (ConsPartCall _) _ es -> all isConstrTerm es
Comb (FuncPartCall _) _ es -> all isConstrTerm es
Comb FuncCall _ _ -> case getSQ e of
Just e' -> isConstrTerm e'
_ -> isFailed e
Typed e' _ -> isConstrTerm e'
_ -> False
patVars :: Pattern -> [VarIndex]
patVars (Pattern _ vs) = vs
patVars (LPattern _) = []
addPartCallArg :: CombType -> QName -> [Expr] -> Expr -> Expr
addPartCallArg ct f es e = Comb ct' f (es ++ [e])
where ct' = case ct of
ConsPartCall 1 -> ConsCall
ConsPartCall n -> ConsPartCall (n - 1)
FuncPartCall 1 -> FuncCall
FuncPartCall n -> FuncPartCall (n - 1)
_ -> error "FlatCurryGoodies.addPartCallArg"
completePartCall :: CombType -> QName -> [Expr] -> Expr
completePartCall ct f es = case ct of
ConsPartCall m -> Comb ConsCall f (es ++ freshVars m)
FuncPartCall m -> Comb FuncCall f (es ++ freshVars m)
_ -> error "FlatCurryGoodies.completePartCall"
where freshVars n = map Var $ take n [maximumVarIndex es + 1 ..]
missingArgs :: CombType -> Int
missingArgs c = case c of
ConsPartCall m -> m
FuncPartCall m -> m
_ -> 0
pat2exp :: Pattern -> Expr
pat2exp (Pattern c vs) = cons c (map Var vs)
pat2exp (LPattern l) = Lit l
mkFree :: [VarIndex] -> Expr -> Expr
mkFree vs e | null vs = e
| otherwise = Free vs e
mkLet :: [(VarIndex, Expr)] -> Expr -> Expr
mkLet ds e | null ds = e
| otherwise = Let ds e
mkOr :: Expr -> Expr -> Expr
mkOr e1 e2 | e1 == failedExpr = e2
| e2 == failedExpr = e1
| otherwise = Or e1 e2
mkCase :: CaseType -> Expr -> [BranchExpr] -> Expr
mkCase ct e bs | null bs' = failedExpr
| otherwise = Case ct e bs'
where
bs' = filter (not . isFailedBranch) bs
isFailedBranch (Branch _ be) = be == failedExpr
mkLazyBind :: [(VarIndex, Expr)] -> Expr -> Expr
mkLazyBind fs e | null fs = e
| otherwise = func prelCond [foldr1 comb (map mkUni fs), e]
where
mkUni (v, b) = func prelLazyUni [Var v, b]
comb a b = func prelAmp [a, b]
func :: QName -> [Expr] -> Expr
func = Comb FuncCall
cons :: QName -> [Expr] -> Expr
cons = Comb ConsCall
prelude :: String -> QName
prelude x = ("Prelude", x)
isFailed :: Expr -> Bool
isFailed e = e == failedExpr
trueExpr :: Expr
trueExpr = cons prelTrue []
falseExpr :: Expr
falseExpr = cons prelFalse []
failedExpr :: Expr
failedExpr = func prelFailed []
combine :: QName -> QName -> Expr -> [Expr] -> [Expr] -> Expr
combine eq con def es1 es2
| null eqs = def
| otherwise = foldr1 (mkCall con) eqs
where
eqs = zipWith (mkCall eq) es1 es2
mkCall f e1 e2 = func f [e1, e2]
mkBool :: Bool -> Expr
mkBool True = trueExpr
mkBool False = falseExpr
(.=:=.) :: Expr -> Expr -> Expr
e1 .=:=. e2 = func prelUni [e1, e2]
(.&>.) :: Expr -> Expr -> Expr
c .&>. e = func prelCond [c, e]
prelPEVAL :: QName
prelPEVAL = prelude "PEVAL"
prelFalse :: QName
prelFalse = prelude "False"
prelTrue :: QName
prelTrue = prelude "True"
prelCond :: QName
prelCond = prelude "&>"
prelCond' :: QName
prelCond' = prelude "cond"
prelAmp :: QName
prelAmp = prelude "&"
prelEq :: QName
prelEq = prelude "=="
prelNeq :: QName
prelNeq = prelude "/="
prelOr :: QName
prelOr = prelude "||"
prelAnd :: QName
prelAnd = prelude "&&"
prelLt :: QName
prelLt = prelude "<"
prelLeq :: QName
prelLeq = prelude "<="
prelGt :: QName
prelGt = prelude ">"
prelGeq :: QName
prelGeq = prelude ">="
prelSuccess :: QName
prelSuccess = prelude "success"
prelFailed :: QName
prelFailed = prelude "failed"
prelUni :: QName
prelUni = prelude "=:="
prelLazyUni :: QName
prelLazyUni = prelude "=:<="
prelUnknown :: QName
prelUnknown = prelude "unknown"
prelApply :: QName
prelApply = prelude "apply"
prelChoice :: QName
prelChoice = prelude "?"
prelPlus :: QName
prelPlus = prelude "+"
prelTimes :: QName
prelTimes = prelude "*"
prelMinus :: QName
prelMinus = prelude "-"
prelDiv :: QName
prelDiv = prelude "div"
prelMod :: QName
prelMod = prelude "mod"
|