1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
------------------------------------------------------------------------------
--- This module provides some utility functions for the SMT-LIB language defined
--- in the package `smtlib` that are needed for checking Curry programs.
--- For example, functions for substituting sorts in terms, simplifying terms
--- and removing polymorphism in SMT-LIB scripts are provided.
---
--- @author  Michael Hanus
--- @version Juli 2021
------------------------------------------------------------------------------

module ESMT where

import Data.Either ( lefts )
import Data.List   ( (\\), intercalate, isPrefixOf, union )

import qualified Data.Map as FM
import Text.Pretty

import Language.SMTLIB.Goodies
import qualified Language.SMTLIB.Types as SMT

------------------------------------------------------------------------------
--- Sorts

-- Shows a sort as a string.
showSort :: SMT.Sort -> String
showSort (SMT.SComb s ss) = s ++ intercalate "_" (map showSort ss)

--- Does the sort represent a type parameter (`TVar i`)?
isTypeParameter :: SMT.Sort -> Bool
isTypeParameter (SMT.SComb s ss) =
  null ss && "TVar" `isPrefixOf` s && length s > 4

----------------------------------------------------------------------------
--- Terms

--- A constant with a sort declaration.
sortedConst :: SMT.Ident -> SMT.Sort -> SMT.Term
sortedConst c s = SMT.TComb (SMT.As c s) []

----------------------------------------------------------------------------
--- Function signatures

--- The signature of a function declaration.
data FunSig = FunSig SMT.Ident [SMT.Sort] SMT.Sort
  deriving (Eq, Show)

--- A definition of a polymorphic, possibly non-deterministic, operation.
--- The first component is a list of type paramters
--- which can be used in the type signature and the term.
--- The term in the third argument is the axiomatization of the function
--- definition. Thus, it contains all quantifiers and the equation
--- `(= (f x1...xn) rhs-term)` so that it can also be used to specify,
--- by exploiting disjunctions, the meaning of non-deterministic operations.
type FunSigTerm = ([SMT.Ident], FunSig, SMT.Term)

----------------------------------------------------------------------------
-- Smart constructors

--- Assert a simplified formula.
sAssert :: SMT.Term -> SMT.Command
sAssert = SMT.Assert . simpTerm

----------------------------------------------------------------------------
--- Examples:
{-
listType =
  DeclareDatatypes
    [("List",1,
      DT ["T"]
         [ DCons "nil" [],
           DCons "cons" [("car", SComb "T" []),
                         ("cdr", SComb "List" [SComb "T" []])]])]

maybeType =
  DeclareDatatypes
    [("Maybe",1,
      DT ["T"]
         [ DCons "Nothing" [],
           DCons "Just" [("just", SComb "T" [])]])]

pairType =
  DeclareDatatypes
    [("Pair",2,
      DT ["X", "Y"]
         [ DCons "mk-pair" [("first",  SComb "X" []),
                            ("second", SComb "Y" [])]])]
-}























---------------------------------------------------------------------------
-- All possibly sorted identifiers occurring in a SMT term.
allQIdsOfTerm :: SMT.Term -> [SMT.QIdent]
allQIdsOfTerm (SMT.TConst _)     = []
allQIdsOfTerm (SMT.TComb f args) = foldr union [f] (map allQIdsOfTerm args)
allQIdsOfTerm (SMT.Forall _ arg) = allQIdsOfTerm arg
allQIdsOfTerm (SMT.Exists _ arg) = allQIdsOfTerm arg
allQIdsOfTerm (SMT.Let bs e)     =
  foldr union [] $ map allQIdsOfTerm $ e : map snd bs
allQIdsOfTerm (SMT.Match e ps)   =
  foldr union [] $ map allQIdsOfTerm $ e : map snd ps
allQIdsOfTerm (SMT.Annot e _)    = allQIdsOfTerm e

-- All possibly sorted identifiers occurring in a define-sig element.
allQIdsOfSigs :: [FunSigTerm] -> [SMT.QIdent]
allQIdsOfSigs = foldr union [] . map allQIdsOfSig
 where allQIdsOfSig (_,_,t) = allQIdsOfTerm t

-- TODO: should be extended to all commands but currently sufficient
allQIdsOfAsserts :: [SMT.Command] -> [SMT.QIdent]
allQIdsOfAsserts = foldr union [] . map allQIdsOfAssert

allQIdsOfAssert :: SMT.Command -> [SMT.QIdent]
allQIdsOfAssert cmd = case cmd of SMT.Assert t -> allQIdsOfTerm t
                                  _            -> []

---------------------------------------------------------------------------
--- All type parameters occurring in a sort.
typeParamsOfSort :: SMT.Sort -> [SMT.Ident]
typeParamsOfSort s@(SMT.SComb sn ss) =
  if isTypeParameter s then [sn]
                       else foldr union [] (map typeParamsOfSort ss)

--- All type parameters contained in a term.
typeParamsOfTerm :: SMT.Term -> [SMT.Ident]
typeParamsOfTerm (SMT.TConst _)       = []
typeParamsOfTerm (SMT.TComb f args)   = foldr union (typeParamsOfQId f)
                                          (map typeParamsOfTerm args)
typeParamsOfTerm (SMT.Forall svs arg) =
  foldr union (typeParamsOfTerm arg) (map typeParamsOfSV svs)
typeParamsOfTerm (SMT.Exists svs arg) =
  foldr union (typeParamsOfTerm arg) (map typeParamsOfSV svs)
typeParamsOfTerm (SMT.Let bs e)       =
  foldr union [] $ map typeParamsOfTerm $ e : map snd bs
typeParamsOfTerm (SMT.Match e ps)     =
  foldr union [] $ map typeParamsOfTerm $ e : map snd ps
typeParamsOfTerm (SMT.Annot e _)      = typeParamsOfTerm e

typeParamsOfQId :: SMT.QIdent -> [SMT.Ident]
typeParamsOfQId (SMT.Id _  ) = []
typeParamsOfQId (SMT.As _ s) = typeParamsOfSort s

typeParamsOfSV :: SMT.SortedVar -> [SMT.Ident]
typeParamsOfSV (SMT.SV _ s) = typeParamsOfSort s

typeParamsOfFunSig :: FunSig -> [SMT.Ident]
typeParamsOfFunSig (FunSig _ ss s) =
  foldr union [] (map typeParamsOfSort (ss++[s]))

--- A type parameter substitution.
type TPSubst = FM.Map SMT.Ident SMT.Sort

--- The empty substitution
emptyTPSubst :: TPSubst
emptyTPSubst = FM.empty

----------------------------------------------------------------------------
--- Compute sort matching, i.e., if `matchSort t1 t2 = s`, then `t2 = s(t1)`.
matchSort :: SMT.Sort -> SMT.Sort -> Maybe TPSubst
matchSort s1@(SMT.SComb sn1 ss1) s2@(SMT.SComb sn2 ss2)
 | isTypeParameter s1
 = Just $ if s1 == s2
            then emptyTPSubst
            else FM.insert (head (typeParamsOfSort s1)) s2 emptyTPSubst
 | otherwise
 = if sn1 == sn2 then matchSorts ss1 ss2 else Nothing

matchSorts :: [SMT.Sort] -> [SMT.Sort] -> Maybe TPSubst
matchSorts []       []       = Just emptyTPSubst
matchSorts []       (_:_)    = Nothing
matchSorts (_:_)    []       = Nothing
matchSorts (t1:ts1) (t2:ts2) = do
  s <- matchSort t1 t2
  t <- matchSorts (map (substSort s) ts1)(map (substSort s) ts2)
  return (FM.union s t)

--- Applies a sort substitution to a sort.
substSort :: TPSubst -> SMT.Sort -> SMT.Sort
substSort sub (SMT.SComb sn ss) =
  maybe (SMT.SComb sn (map (substSort sub) ss)) id (FM.lookup sn sub)

--- Applies a sort substitution to a term.
substTerm :: TPSubst -> SMT.Term -> SMT.Term
substTerm sub term = case term of
  SMT.TConst _       -> term
  SMT.TComb f args   -> SMT.TComb (substQId sub f) (map (substTerm sub) args)
  SMT.Forall svs arg -> SMT.Forall (map (substSV sub) svs) (substTerm sub arg)
  SMT.Exists svs arg -> SMT.Forall (map (substSV sub) svs) (substTerm sub arg)
  SMT.Let bs e       -> SMT.Let (map (\ (v,s) -> (v, substTerm sub s)) bs)
                                (substTerm sub e)
  SMT.Match e ps     -> SMT.Match (substTerm sub e)
                                  (map (\(p,t) -> (p, substTerm sub t)) ps)
  SMT.Annot e as     -> SMT.Annot (substTerm sub e) as

substQId :: TPSubst -> SMT.QIdent -> SMT.QIdent
substQId _ qid@(SMT.Id _) = qid
substQId sub (SMT.As n s) = SMT.As n (substSort sub s)

substSV :: TPSubst -> SMT.SortedVar -> SMT.SortedVar
substSV sub (SMT.SV v s) = SMT.SV v (substSort sub s)

substFunSig :: TPSubst -> FunSig -> FunSig
substFunSig sub (FunSig fn ss s) =
  FunSig fn (map (substSort sub) ss) (substSort sub s)

substDefSig :: TPSubst -> FunSigTerm -> FunSigTerm
substDefSig tsub (ps, fsig, term) =
  (ps \\ FM.keys tsub, substFunSig tsub fsig, substTerm tsub term)

--------------------------------------------------------------------------
-- Rename identifiers.

rnmTerm :: (SMT.Ident -> SMT.Ident) -> SMT.Term -> SMT.Term
rnmTerm rnm term = case term of
  SMT.TConst _       -> term
  SMT.TComb f args   -> SMT.TComb (rnmQId rnm f) (map (rnmTerm rnm) args)
  SMT.Forall svs arg -> SMT.Forall svs (rnmTerm rnm arg)
  SMT.Exists svs arg -> SMT.Forall svs (rnmTerm rnm arg)
  SMT.Let bs e       -> SMT.Let (map (\ (v,s) -> (v, rnmTerm rnm s)) bs)
                                (rnmTerm rnm e)
  SMT.Match e ps     -> SMT.Match (rnmTerm rnm e)
                                  (map (\(p,t) -> (p, rnmTerm rnm t)) ps)
  SMT.Annot e as     -> SMT.Annot (rnmTerm rnm e) as

rnmQId :: (SMT.Ident -> SMT.Ident) -> SMT.QIdent -> SMT.QIdent
rnmQId rnm (SMT.Id n)   = SMT.Id (rnm n)
rnmQId rnm (SMT.As n s) = SMT.As (rnm n) s

rnmFunSig :: (SMT.Ident -> SMT.Ident) -> FunSig -> FunSig
rnmFunSig rnm (FunSig fn ss s) = FunSig (rnm fn) ss s

rnmDefSig :: (SMT.Ident -> SMT.Ident) -> ([SMT.Ident],FunSig,SMT.Term)
          -> ([SMT.Ident],FunSig,SMT.Term)
rnmDefSig rnm (ps, fsig, term) =
  (ps, rnmFunSig rnm fsig, rnmTerm rnm term)

--------------------------------------------------------------------------
-- A simplifier for terms:
simpTerm :: SMT.Term -> SMT.Term
simpTerm (SMT.TConst l) = SMT.TConst l
simpTerm (SMT.Let bs t) = if null bs then t'
                                 else SMT.Let bs' t'
 where bs' = map (\ (v,tm) -> (v, simpTerm tm)) bs
       t'  = simpTerm t
simpTerm (SMT.Forall vs t) = if null vs then t' else SMT.Forall vs t'
 where t' = simpTerm t
simpTerm (SMT.Exists vs t) = if null vs then t' else SMT.Exists vs t'
 where t' = simpTerm t
simpTerm (SMT.Match e ps)  = SMT.Match (simpTerm e)
                                       (map (\(p,t) -> (p, simpTerm t)) ps)
simpTerm (SMT.Annot t as)  = SMT.Annot (simpTerm t) as
simpTerm (SMT.TComb f ts)
 | unqual f == "/=" && length ts == 2
 = simpTerm (SMT.TComb (SMT.Id "not") [SMT.TComb (SMT.Id "=") ts])
 | f == SMT.Id "apply" && not (null ts')
 = case head ts' of SMT.TComb s' ts0 -> SMT.TComb s' (ts0 ++ tail ts')
                    _            -> fts
 | f == SMT.Id "not"
 = case ts' of [SMT.TComb s' [ts0]] -> if s' == f then ts0 else fts
               _                -> fts
 | f == SMT.Id "and"
 = case filter (/= true) ts' of
          []  -> true
          cjs -> if false `elem` cjs
                   then false
                   else SMT.TComb f (concatMap joinSame cjs)
 | f == SMT.Id "or"
 = case filter (/= false) ts' of
          []  -> false
          djs -> if true `elem` djs
                   then true
                   else SMT.TComb f (concatMap joinSame djs)
 | otherwise = fts
 where
  ts' = map simpTerm ts
  fts = SMT.TComb f ts'

  joinSame arg = case arg of SMT.TComb f' args | f==f' -> args
                             _                         -> [arg]

--------------------------------------------------------------------------
-- Remove As-identifiers if they are functions (for better readability):
reduceAsInTerm :: SMT.Term -> SMT.Term
reduceAsInTerm (SMT.TConst l)    = SMT.TConst l
reduceAsInTerm (SMT.Let bs t)    = SMT.Let
                                     (map (\ (v,tm) ->
                                             (v, reduceAsInTerm tm)) bs)
                                     (reduceAsInTerm t)
reduceAsInTerm (SMT.Forall vs t) = SMT.Forall vs (reduceAsInTerm t)
reduceAsInTerm (SMT.Exists vs t) = SMT.Exists vs (reduceAsInTerm t)
reduceAsInTerm (SMT.Match e ps)  = SMT.Match (reduceAsInTerm e)
                                             (map (\(p,t) ->
                                                    (p, reduceAsInTerm t)) ps)
reduceAsInTerm (SMT.Annot t as)  = SMT.Annot (reduceAsInTerm t) as
reduceAsInTerm (SMT.TComb f ts)  = SMT.TComb (simpAs f) (map reduceAsInTerm ts)
 where
  simpAs qid = case qid of SMT.As n (SMT.SComb s _) | s == "Func" -> SMT.Id n
                           _                                      -> qid

--------------------------------------------------------------------------
-- Get all sort identifiers occurring in a sort.
sortIdsOfSort :: SMT.Sort -> [SMT.Ident]
sortIdsOfSort (SMT.SComb s ss) = s : concatMap sortIdsOfSort ss

-- Get all sorts occurring in a term.
sortsOfTerm :: SMT.Term -> [SMT.Sort]
sortsOfTerm (SMT.TConst _)    = []
sortsOfTerm (SMT.Let bs t)    = concatMap (sortsOfTerm . snd) bs
                                ++ sortsOfTerm t
sortsOfTerm (SMT.Forall vs t) = map sortOfSortedVar vs ++ sortsOfTerm t
sortsOfTerm (SMT.Exists vs t) = map sortOfSortedVar vs ++ sortsOfTerm t
sortsOfTerm (SMT.Match e ps)  = concatMap (sortsOfTerm . snd) ps
                                ++  sortsOfTerm e
sortsOfTerm (SMT.Annot t _)   = sortsOfTerm t
sortsOfTerm (SMT.TComb f ts)  = sortsOfQIdent f ++ concatMap sortsOfTerm ts
 where
  sortsOfQIdent (SMT.Id _)   = []
  sortsOfQIdent (SMT.As _ s) = [s]

sortOfSortedVar :: SMT.SortedVar -> SMT.Sort
sortOfSortedVar (SMT.SV _ s) = s

--------------------------------------------------------------------------
-- Remove parametric polymorphism in an SMT script.
-- First, for all QIdents occurring in assertions, their type-instantiated
-- signatures are added. Then, for all QIdents occurring in these added
-- operations, their type-instantiated signatures are added and so forth,
-- until nothing needs to be added. Finally, the type-instantiated signatures
-- are renamed.
unpoly :: [Either [FunSigTerm] SMT.Command] -> [SMT.Command]
unpoly commands =
   let allsigs = map sigNameSort . concat . lefts $ commands
   in concatMap (unpolyCmd allsigs) . reverse . addSigs [] . reverse $ commands
 where
  addSigs :: [SMT.QIdent] -> [Either [FunSigTerm] SMT.Command]
          -> [Either [FunSigTerm] SMT.Command]
  addSigs _    []         = []
  addSigs qids (cmd:cmds) = case cmd of
    Left fts ->
      let (qids1,ftss) = addAllInstancesOfSigs (union (allQIdsOfSigs fts) qids)
                                               fts
      in Left ftss : addSigs qids1 cmds
    Right cmd' -> cmd : addSigs (union (allQIdsOfAssert cmd') qids) cmds

  -- remove remaining polymorphic signatures and rename qualified names
  -- according to their sorts
  unpolyCmd :: [(SMT.Ident, ([SMT.Ident],SMT.Sort))]
            -> Either [FunSigTerm] SMT.Command -> [SMT.Command]
  unpolyCmd sigs cmd = case cmd of
    Left fts -> funSigTermsToCommands $
                           map rnmTermInSig (filter (\ (ps,_,_) -> null ps) fts)
    Right (SMT.Assert term) -> [SMT.Assert (rnmQIdWithTInstTerm sigs term)]
    Right cmd' -> [cmd']
   where
    rnmTermInSig (ps,sig,term) = (ps, sig, rnmQIdWithTInstTerm sigs term)

-- Converts a list of function signatures into a list of commands that
-- axiomatize those functions.
funSigTermsToCommands :: [FunSigTerm] -> [SMT.Command]
funSigTermsToCommands fts = map
                              (\(_, (FunSig fn ss s), _) -> SMT.DeclareFun fn ss s)
                              fts
                            ++ concatMap (\(_, (FunSig fn _ _), term) ->
                                 [ SMT.Comment ""
                                 , SMT.Comment $ "Axiomatization of function '"
                                     ++ fn ++ "'"
                                 , sAssert term])
                               fts

-- Transforms a list of signatures into all its instances required by
-- sorted identifiers (second argument) and also required by sorted
-- identifiers in the added instances. Returns also the list of
-- remaining identifiers.
addAllInstancesOfSigs :: [SMT.QIdent] -> [FunSigTerm]
                      -> ([SMT.QIdent], [FunSigTerm])
addAllInstancesOfSigs allqids = addAllInsts allqids
 where
  addAllInsts qids fts =
    let (qids1,fts1) = addInstancesOfSigs qids fts
    in if null fts1
         then (qids1,fts)
         else let (qids2,fts2) = addAllInsts
                                   (union qids1 (allQIdsOfSigs fts1 \\ allqids))
                                   (fts ++ fts1)
              in (qids2, fts2)

-- Adds to given (polymorphic) define-sig elements all its type instances
-- required by qualified identifiers occurring in the first argument
-- provided that it does not already occur in the sig elements.
-- The list of unused qualified identifiers is also returned.
addInstancesOfSigs :: [SMT.QIdent] -> [FunSigTerm]
                   -> ([SMT.QIdent], [FunSigTerm])
addInstancesOfSigs qids allsigs = addInstsOfSigs qids allsigs
 where
  addInstsOfSigs qids0 []         = (qids0,[])
  addInstsOfSigs qids0 (fts:ftss) =
    let (qids1,fts1) = addInstancesOfSig qids0 allsigs fts
        (qids2,fts2) = addInstsOfSigs qids1 ftss
    in (qids2, fts1 ++ fts2)

-- Adds to a given (polymorphic) define-sig element all its type instances
-- required by qualified identifiers occurring in the first argument
-- provided that it does not already occur in the sig elements
-- contained in the second argument.
-- The list of unused qualified identifiers is also returned.
addInstancesOfSig :: [SMT.QIdent] -> [FunSigTerm] -> FunSigTerm
                  -> ([SMT.QIdent], [FunSigTerm])
addInstancesOfSig allqids allsigs fts@(ps, (FunSig fn ss rs), _) =
  addSigInsts allqids
 where
  addSigInsts :: [SMT.QIdent] -> ([SMT.QIdent], [FunSigTerm])
  addSigInsts []         = ([],[])
  addSigInsts (qid:qids) =
    let (qids1,sigs1) = addSigInsts qids
    in case qid of
         SMT.As n s | n==fn -> (qids1, sigInstForType s ++ sigs1)
         _              -> (qid : qids1, sigs1)

  sigInstForType s =
    maybe []
          (\tsub -> let rnm = toTInstName fn ps tsub
                    in if rnm fn `elem` map nameOfSig allsigs
                         then []
                         else [(rnmDefSig rnm (substDefSig tsub fts))])
          (matchSort (sigTypeAsSort ss rs) s)

--------------------------------------------------------------------------
-- Rename a sorted name w.r.t. its type instance of the polymorphic function.
-- For instance,
--     (As "id" (SComb "Func" [SComb "Int" [], SComb "Int" []]))
-- will be renamed to
--     (As "id_Int" (SComb "Func" [SComb "Int" [], SComb "Int" []]))
rnmQIdWithTInst :: [(SMT.Ident, ([SMT.Ident],SMT.Sort))] -> SMT.QIdent
                -> SMT.QIdent
rnmQIdWithTInst _ (SMT.Id n) = SMT.Id n
rnmQIdWithTInst sigs qid@(SMT.As n s) =
  maybe qid
        (\ (ps,psort) -> maybe qid
                               (\tsub -> SMT.As (addTInstName ps tsub n) s)
                               (matchSort psort s))
        (lookup n sigs)

-- Rename all sorted names occurring in a term w.r.t. its type instance
-- of the polymorphic function.
rnmQIdWithTInstTerm :: [(SMT.Ident, ([SMT.Ident],SMT.Sort))] -> SMT.Term
                    -> SMT.Term
rnmQIdWithTInstTerm sigs term = case term of
  SMT.TConst _ -> term
  SMT.TComb f args -> SMT.TComb (rnmQIdWithTInst sigs f)
                        (map (rnmQIdWithTInstTerm sigs) args)
  SMT.Forall svs arg -> SMT.Forall svs (rnmQIdWithTInstTerm sigs arg)
  SMT.Exists svs arg -> SMT.Forall svs (rnmQIdWithTInstTerm sigs arg)
  SMT.Let bs e -> SMT.Let (map (\ (v,s) -> (v, rnmQIdWithTInstTerm sigs s)) bs)
                  (rnmQIdWithTInstTerm sigs e)
  SMT.Match e ps -> SMT.Match (rnmQIdWithTInstTerm sigs e)
                              (map
                                (\(p,t) -> (p, rnmQIdWithTInstTerm sigs t)) ps)
  SMT.Annot e as -> SMT.Annot (rnmQIdWithTInstTerm sigs e) as

-- Renaming operation which changes the name of a given (polymorphic)
-- function w.r.t. a list of type parameters and a substitution.
toTInstName :: SMT.Ident -> [SMT.Ident] -> TPSubst -> SMT.Ident -> SMT.Ident
toTInstName fn ps tsub n | fn == n   = addTInstName ps tsub n
                         | otherwise = n

-- Add a sort index to a name of a (polymorphic) function w.r.t.
-- a list of type parameters and a type substitution.
addTInstName :: [SMT.Ident] -> TPSubst -> SMT.Ident -> SMT.Ident
addTInstName tps tsub n =
  n ++ concatMap (\p -> maybe "" (('_':) . showSort) (FM.lookup p tsub)) tps

-- The name of a signature.
nameOfSig :: FunSigTerm -> SMT.Ident
nameOfSig (_, FunSig n _ _, _) = n

-- The name and sort of a signature.
sigNameSort :: FunSigTerm -> (SMT.Ident, ([SMT.Ident],SMT.Sort))
sigNameSort (ps, FunSig n ss s, _) = (n, (ps, sigTypeAsSort ss s))

sigTypeAsSort :: [SMT.Sort] -> SMT.Sort -> SMT.Sort
sigTypeAsSort [] s = s
sigTypeAsSort (t:ts) s = SMT.SComb "Func" [t, sigTypeAsSort ts s]