1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
  | 
module Rewriting.Strategy
  ( RStrategy, Reduction (..)
  , showReduction, redexes, seqRStrategy, parRStrategy, liRStrategy
  , loRStrategy, riRStrategy, roRStrategy, piRStrategy, poRStrategy, reduce
  , reduceL, reduceBy, reduceByL, reduceAt, reduceAtL, reduction, reductionL
  , reductionBy, reductionByL
  ) where
import List (nub, intercalate, groupBy, sortBy, minimumBy)
import Rewriting.Position
import Rewriting.Rules (TRS, renameRuleVars, renameTRSVars)
import Rewriting.Substitution (applySubst)
import Rewriting.Term (Term, showTerm, maxVarInTerm)
import Rewriting.Unification (unify)
type RStrategy f = TRS f -> Term f -> [Pos]
data Reduction f = NormalForm (Term f) | RStep (Term f) [Pos] (Reduction f)
showReduction :: (f -> String) -> Reduction f -> String
showReduction s (NormalForm t) = showTerm s t
showReduction s (RStep t ps r) = (showTerm s t) ++ "\n\8594"  ++ "["
                                   ++ (intercalate "," (map showPos ps))
                                   ++ "] " ++ (showReduction s r)
redexes :: Eq f => TRS f -> Term f -> [Pos]
redexes trs t
  = let trs' = maybe trs (\v -> renameTRSVars (v + 1) trs) (maxVarInTerm t)
     in nub [p | p <- positions t, let tp = t |> p,
                 (l, _) <- trs',
                 (Right sub) <- [unify [(l, tp)]],
                 tp == (applySubst sub l)]
seqRStrategy :: Eq f => (Pos -> Pos -> Ordering) -> RStrategy f
seqRStrategy cmp trs t = case redexes trs t of
                           []       -> []
                           ps@(_:_) -> [minimumBy cmp ps]
parRStrategy :: Eq f => (Pos -> Pos -> Ordering) -> RStrategy f
parRStrategy cmp trs t = case redexes trs t of
                           []       -> []
                           ps@(_:_) -> head (groupBy g (sortBy s ps))
  where
    g :: Pos -> Pos -> Bool
    g p q = (cmp p q) == EQ
    s :: Pos -> Pos -> Bool
    s p q = (cmp p q) /= GT
liRStrategy :: Eq f => RStrategy f
liRStrategy = seqRStrategy liOrder
  where
    liOrder :: Pos -> Pos -> Ordering
    liOrder p q | p == q     = EQ
                | leftOf p q = LT
                | below p q  = LT
                | otherwise  = GT
loRStrategy :: Eq f => RStrategy f
loRStrategy = seqRStrategy loOrder
  where
    loOrder :: Pos -> Pos -> Ordering
    loOrder p q | p == q     = EQ
                | leftOf p q = LT
                | above p q  = LT
                | otherwise  = GT
riRStrategy :: Eq f => RStrategy f
riRStrategy = seqRStrategy riOrder
  where
    riOrder :: Pos -> Pos -> Ordering
    riOrder p q | p == q      = EQ
                | rightOf p q = LT
                | below p q   = LT
                | otherwise   = GT
roRStrategy :: Eq f => RStrategy f
roRStrategy = seqRStrategy roOrder
  where
    roOrder :: Pos -> Pos -> Ordering
    roOrder p q | p == q      = EQ
                | rightOf p q = LT
                | above p q   = LT
                | otherwise      = GT
piRStrategy :: Eq f => RStrategy f
piRStrategy = parRStrategy piOrder
  where
    piOrder :: Pos -> Pos -> Ordering
    piOrder p q | p == q    = EQ
                | below p q = LT
                | above p q = GT
                | otherwise = EQ
poRStrategy :: Eq f => RStrategy f
poRStrategy = parRStrategy poOrder
  where
    poOrder :: Pos -> Pos -> Ordering
    poOrder p q | p == q    = EQ
                | above p q = LT
                | below p q = GT
                | otherwise = EQ
reduce :: Eq f => RStrategy f -> TRS f -> Term f -> Term f
reduce s trs t = case s trs t of
                   []       -> t
                   ps@(_:_) -> reduce s trs (reduceAtL trs ps t)
reduceL :: Eq f => RStrategy f -> [TRS f] -> Term f -> Term f
reduceL s trss = reduce s (concat trss)
reduceBy :: Eq f => RStrategy f -> TRS f -> Int -> Term f -> Term f
reduceBy s trs n t
  | n <= 0    = t
  | otherwise = case s trs t of
                  []       -> t
                  ps@(_:_) -> reduceBy s trs (n - 1) (reduceAtL trs ps t)
reduceByL :: Eq f => RStrategy f -> [TRS f] -> Int -> Term f -> Term f
reduceByL s trss = reduceBy s (concat trss)
reduceAt :: Eq f => TRS f -> Pos -> Term f -> Term f
reduceAt []     _ t = t
reduceAt (x:rs) p t
  = case unify [(l, tp)] of
      (Left _)                           -> reduceAt rs p t
      (Right s) | tp == (applySubst s l) -> replaceTerm t p (applySubst s r)
                | otherwise              -> reduceAt rs p t
  where
    tp = t |> p
    (l, r) = maybe x (\v -> renameRuleVars (v + 1) x) (maxVarInTerm tp)
reduceAtL :: Eq f => TRS f -> [Pos] -> Term f -> Term f
reduceAtL _   []     t = t
reduceAtL trs (p:ps) t = reduceAtL trs ps (reduceAt trs p t)
reduction :: Eq f => RStrategy f -> TRS f -> Term f -> Reduction f
reduction s trs t
  = case s trs t of
      []       -> NormalForm t
      ps@(_:_) -> RStep t ps (reduction s trs (reduceAtL trs ps t))
reductionL :: Eq f => RStrategy f -> [TRS f] -> Term f -> Reduction f
reductionL s trss = reduction s (concat trss)
reductionBy :: Eq f => RStrategy f -> TRS f -> Int -> Term f -> Reduction f
reductionBy s trs n t
  | n <= 0    = NormalForm t
  | otherwise = case s trs t of
                  []       -> NormalForm t
                  ps@(_:_) -> let t' = reduceAtL trs ps t
                               in RStep t ps (reductionBy s trs (n - 1) t')
reductionByL :: Eq f => RStrategy f -> [TRS f] -> Int -> Term f -> Reduction f
reductionByL s trss = reductionBy s (concat trss) |