1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
-------------------------------------------------------------------------------- --- Library for representation of positions in first-order terms. --- --- @author Jan-Hendrik Matthes --- @version February 2020 --- @category algorithm -------------------------------------------------------------------------------- module Rewriting.Position ( Pos , showPos, eps, above, below, leftOf, rightOf, disjoint, positions, (.>), (|>) , replaceTerm ) where import List (intercalate, isPrefixOf) import Rewriting.Term (Term (..)) -- ----------------------------------------------------------------------------- -- Representation of positions in first-order terms -- ----------------------------------------------------------------------------- --- A position in a term represented as a list of integers greater than zero. type Pos = [Int] -- ----------------------------------------------------------------------------- -- Pretty-printing of positions in first-order terms -- ----------------------------------------------------------------------------- -- \x00b7 = MIDDLE DOT -- \x03b5 = GREEK SMALL LETTER EPSILON --- Transforms a position into a string representation. showPos :: Pos -> String showPos [] = "\949" showPos ps@(_:_) = intercalate "\183" (map show ps) -- ----------------------------------------------------------------------------- -- Functions for positions in first-order terms -- ----------------------------------------------------------------------------- --- The root position of a term. eps :: Pos eps = [] --- Checks whether the first position is above the second position. above :: Pos -> Pos -> Bool above = isPrefixOf --- Checks whether the first position is below the second position. below :: Pos -> Pos -> Bool below = flip above --- Checks whether the first position is left from the second position. leftOf :: Pos -> Pos -> Bool leftOf [] _ = False leftOf (_:_) [] = False leftOf (p:ps) (q:qs) = case compare p q of LT -> True EQ -> leftOf ps qs GT -> False --- Checks whether the first position is right from the second position. rightOf :: Pos -> Pos -> Bool rightOf = flip leftOf --- Checks whether two positions are disjoint. disjoint :: Pos -> Pos -> Bool disjoint p q = not (above p q || below p q) --- Returns a list of all positions in a term. positions :: Term _ -> [Pos] positions (TermVar _) = [eps] positions (TermCons _ ts) = eps:[i:p | (i, t) <- zip [1..] ts, p <- positions t] --- Concatenates two positions. (.>) :: Pos -> Pos -> Pos (.>) = (++) -- ----------------------------------------------------------------------------- -- Functions for subterm selection and term replacement -- ----------------------------------------------------------------------------- --- Returns the subterm of a term at the given position if the position exists --- within the term. (|>) :: Term f -> Pos -> Term f t |> [] = t TermCons _ ts |> (i:p) = (ts !! (i - 1)) |> p TermVar _ |> (_:_) = error "(|>): A term variable has no subterms!" --- Replaces the subterm of a term at the given position with the given term if --- the position exists within the term. replaceTerm :: Term f -> Pos -> Term f -> Term f replaceTerm _ [] s = s replaceTerm t@(TermVar _) (_:_) _ = t replaceTerm t@(TermCons c ts) (i:p) s | i > 0 && i <= length ts = TermCons c ts' | otherwise = t where (ts1, ti:ts2) = splitAt (i - 1) ts ts' = ts1 ++ (replaceTerm ti p s : ts2) |