1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
module Plural
( transformProg
)
where
import AbstractCurry.Types hiding ( QName )
import Data.FiniteMap
import FlatCurry.Types
import List ( init )
import State
import StateMonad
import Lookup
import Translate
import Utilities
transformProg :: Monad m => [QName] -> OptState m ()
transformProg targets = do
(Prog name _ _ _ _) <- gets currentProg
modify $ setCurrentModule name
fds <- mapM lookupFuncDecl targets
cfds <- mapM transformFuncDecl fds
modify $ addCurryFDs cfds
modify $ addCurryImports ["ST"]
transformType :: Monad m => TypeDecl -> OptState m ()
transformType (TypeSyn _ _ _ _) = return ()
transformType tyd@(Type qn vis vs cs)
| isBasicType tyd = do
tMap <- gets typeMap
tSTMap <- gets typeSTMap
modify $ setTypeMap (addToFM tMap qn qn)
modify $ setTypeSTMap (addToFM tSTMap qn qn)
return ()
| otherwise = do
qn' <- renameTypeQName True qn
tMap <- gets typeMap
tSTMap <- gets typeSTMap
modify $ setTypeMap (addToFM tMap qn qn')
modify $ setTypeSTMap (addToFM tSTMap qn' qn)
cs' <- mapM transformConsDecl cs
let vis' = translVis vis
vs' = map translTVar vs
td = CType qn' vis' vs' cs' []
modify $ addCurryTDs [td]
transformConsDecl :: Monad m => ConsDecl -> OptState m CConsDecl
transformConsDecl (FlatCurry.Types.Cons qn _ vis tys) = do
qn' <- renameConsQName qn
cMap <- gets consMap
modify $ setConsMap (addToFM cMap qn qn')
tys' <- mapM transformTypeExprST tys
let c = CContext []
vis' = translVis vis
return $ CCons [] c qn' vis' tys'
transformTypeExprST :: (Monad m) => TypeExpr -> OptState m CTypeExpr
transformTypeExprST ty = case ty of
TVar i -> return $ addST (CTVar $ translTVar i)
FuncType d r@(FuncType _ _) -> do
d' <- transformTypeExpr d
r' <- transformTypeExprST r
return $ CFuncType (addST d') r'
FuncType d r -> do
d' <- transformTypeExpr d
r' <- transformTypeExpr r
return $ CFuncType (addST d') (addST r')
ForallType _ typ -> transformTypeExprST typ >>= (return . addST)
TCons _ _ -> transformTypeExpr ty >>= (return . addST)
transformTypeExpr :: (Monad m) => TypeExpr -> OptState m CTypeExpr
transformTypeExpr ty = case ty of
FuncType d r -> do
d' <- transformTypeExpr d
r' <- transformTypeExprST r
return $ CFuncType d' r'
TCons qn tys -> do
tMap <- gets typeMap
case lookupFM tMap qn of
Just qn' -> do
tys' <- mapM transformTypeExpr tys
return $ listToType qn' tys'
Nothing -> do
td <- lookupTypeDecl qn
transformType td
transformTypeExpr ty
_ -> return $ translTypeExpr ty
transformFuncQN :: Monad m => QName -> OptState m QName
transformFuncQN = transformQN funcMap
transformConsQN :: Monad m => QName -> OptState m QName
transformConsQN = transformQN consMap
transformQN :: Monad m => (State -> QMap) -> QName -> OptState m QName
transformQN f qn = do
xMap <- gets f
return $ case lookupFM xMap qn of
Just qn' -> qn'
Nothing -> qn
transformBranchExpr :: Monad m => QName -> BranchExpr -> OptState m CBranchExpr
transformBranchExpr pqn (Branch pat e) = do
e' <- transformExpr pqn e
pat' <- transformPat pat
return $ cbranch pat' (CSimpleRhs e' [])
where
transformPat (Pattern qn is) = do
qn' <- transformConsQN qn
return $ CPComb qn' (map (CPVar . translExistingVar) is)
transformPat (LPattern l) = return $ CPLit (translLit l)
transformBind :: Monad m => QName -> (VarIndex, Expr) -> OptState m CLocalDecl
transformBind qn (i, e) = do
ce <- transformExpr qn e
return $ CLocalPat (CPVar $ translExistingVar i) (CSimpleRhs ce [])
transformExpr :: Monad m => QName -> Expr -> OptState m CExpr
transformExpr pqn expr = case expr of
Var i -> return $ CVar (translExistingVar i)
Lit l -> return $ CApply (CSymbol ("ST", "Val")) (CLit (translLit l))
Comb _ ("Prelude", "failed") _ -> return $ CSymbol ("ST", "Fail")
Comb ctype qn es -> case ctype of
ConsCall -> do
qn' <- transformConsQN qn
ces <- mapM (transformExpr pqn) es
let t = CApply (CSymbol ("ST", "Val")) (listToExpr qn' ces)
return t
FuncCall -> do
funMap <- gets funcMap
case lookupFM funMap qn of
Just qn' -> do
ces <- mapM (transformExpr pqn) es
supplyVar <- freshVar
modify $ addToSupplyVarMap pqn (VarIDSupply, supplyVar)
return $ listToExpr qn' (CVar supplyVar : ces)
Nothing -> do
fd <- lookupFuncDecl qn
cfd <- transformFuncDecl fd
modify $ addCurryFDs [cfd]
transformExpr pqn expr
_ -> notImplemented "transformExpr" "FuncPartCall/ConsPartCall"
Let binds exp -> do
exp' <- transformExpr pqn exp
clds <- mapM (transformBind pqn) binds
return $ CLetDecl clds exp'
Free is exp -> do
exp' <- transformExpr pqn exp
let clds = map (CLocalVars . (: []) . translExistingVar) is
return $ CLetDecl clds exp'
Or e1 e2 -> do
e1' <- transformExpr pqn e1
e2' <- transformExpr pqn e2
id <- freshVar
modify $ addToSupplyVarMap pqn (VarID, id)
let t = listToExpr ("ST", "Choice") [CVar id, e1', e2']
return t
Case _ exp brexprs -> do
exp' <- transformExpr pqn exp
brs' <- mapM (transformBranchExpr pqn) brexprs
let ccase = CCase CRigid (CVar $ translVar 0) brs'
clambda = CLambda [CPVar $ translVar 0] ccase
return $ listToExpr ("ST", "applyST") [clambda, exp']
Typed e ty -> do
e' <- transformExpr pqn e
ty' <- transformTypeExprST ty
return $ CTyped e' (CQualType (CContext []) ty')
transformFuncDecl :: Monad m => FuncDecl -> OptState m CFuncDecl
transformFuncDecl (Func qn ar vis ty r) = do
qnp <- renameFuncQName qn
funMap <- gets funcMap
let qn' = addQNPostfix "P" qnp
modify $ setFuncMap (addToFM funMap qn qn')
typ <- transformTypeExprST ty
r' <- transformRule qn r
let ty' = addIDSupplyType typ
vis' = translVis vis
t = CQualType (CContext []) ty'
cfd = CFunc qn' ar vis' t [r']
funTypes <- gets funcTypes
modify $ setFuncTypes ((translTypeExpr ty, typ) : funTypes)
return $ cfd
addIDSupplyType :: CTypeExpr -> CTypeExpr
addIDSupplyType t = CFuncType (CTCons ("ST", "IDSupply")) t
transformRule :: Monad m => QName -> Rule -> OptState m CRule
transformRule qn (Rule is e) = do
e' <- transformExpr qn e
sMap <- gets supplyVarMap
sv <- freshVar
let pats = map (CPVar . translExistingVar) is
case lookupFM sMap qn of
Just xs -> do
ldcls <- genIDSupplyLDecls xs sv
let r = CRule (CPVar sv : pats) (CSimpleRhs e' ldcls)
return r
Nothing -> return $ CRule pats (CSimpleRhs e' [])
transformRule _ (External _) = notImplemented "transformRule" "External rules"
genIDSupplyLDecls
:: Monad m
=> [(VarKind, CVarIName)]
-> CVarIName
-> OptState m [CLocalDecl]
genIDSupplyLDecls xs var = do
vs <- freshVars (length xs)
let xvs = zip3 xs vs (var : vs)
ldecls = init $ concatMap genIDSupplyLDeclPair xvs
return ldecls
genIDSupplyLDeclPair
:: ((VarKind, CVarIName), CVarIName, CVarIName) -> [CLocalDecl]
genIDSupplyLDeclPair ((kind, x), v, s) =
let rhs n e = CSimpleRhs (CApply (CSymbol ("ST", n)) e) []
ldecl n var = CLocalPat (CPVar var) (rhs n (CVar s))
fname = case kind of
VarID -> "uniqueID"
VarIDSupply -> "rightSupply"
in [ldecl fname x, ldecl "leftSupply" v]
rename :: Monad m => (String -> String) -> Bool -> QName -> OptState m QName
rename rf st (_, n) = do
m <- gets currentModule
let qn = (m, rf n)
return $ if st then addQNPrefix "ST" qn else qn
renameTypeQName :: Monad m => Bool -> QName -> OptState m QName
renameTypeQName = rename renameType
renameFuncQName, renameConsQName :: Monad m => QName -> OptState m QName
renameFuncQName = rename renameFunc False
renameConsQName = rename renameCons True
|