
Declarative Processing of
Semistructured Web Data

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.

mh@informatik.uni-kiel.de

Technical Report 1103, March 2011

Abstract

In order to give application programs access to data stored in the web in
semistructured formats, in particular, in XML format, we propose a domain-specific
language for declarative processing such data. Our language is embedded in the
functional logic programming language Curry and offers powerful matching con-
structs that enable a declarative description of accessing and transforming XML
data. We exploit advanced features of functional logic programming to provide a
high-level and maintainable implementation of our language. Actually, this paper
contains the complete code of our implementation so that the source text of this
paper is an executable implementation of our language.

1 Motivation

Nowadays, huge amounts of information are available in the world-wide web. Much of
this information is also available in semistructured formats so that it can be automatically
accessed by application programs. The extensible markup language (XML) is often used as
an exchange format for such data. Since data in XML format are basically term structures,
XML data can be (in principle) easily processed with functional or logic programming
languages: one has to define a term representation of XML data in the programming
language, implement a parser from the textual XML representation into such terms, and
exploit pattern matching to implement the specific processing task.

In practice, such an implementation causes some difficulties due to the fact that the
concrete data formats are complex or evolve over time:

• For many application areas, concrete XML languages are defined. However, they
are often quite complex so that it is difficult or tedious to deal with all details when
one is interested in extracting only some parts of the given data.

1



<contacts>

<entry>

<name>Hanus</name>

<first>Michael</first>

<phone>+49-431-8807271</phone>

<email>mh@informatik.uni-kiel.de</email>

<email>hanus@acm.org</email>

</entry>

<entry>

<name>Smith</name>

<first>William</first>

<nickname>Bill</nickname>

<phone>+1-987-742-9388</phone>

</entry>

</contacts>

Figure 1: A simple XML document

• For more specialized areas without standardized XML languages, the XML format
might be incompletely specified or evolves over time. Thus, application programs
with standard pattern matching must be adapted if the data format changes.

For instance, consider the XML document shown in Figure 1 which represents the data of
a small address book. As one can see, the two entries have different information fields: the
first entry contains two email addresses but no nickname whereas the second entry contains
no email address but a nickname. Such data, which is not uncommon in practice, is also
called “semistructured” [1]. Semistructured data causes difficulties when it should be
processed with a declarative programming language by mapping the XML structures into
data terms of the implementation language. Therefore, various distinguished languages
for processing XML data have been proposed.

For instance, the language XPath1 provides powerful path expressions to select sub-
documents in XML documents. Although path expressions allow flexible retrievals by the
use of wildcards, regular path expressions, stepping to father and sibling nodes etc, they
are oriented towards following a path through the document from the root to the selected
sub-documents. This gives them a more imperative rather than a descriptive or declarative
flavor. The same is true for query and transformation languages like XQuery2 or XSLT3

which are based on the XPath-oriented style to select the required sub-documents.
As an alternative to path-oriented processing languages, the language Xcerpt [8, 10]

is a proposal to exploit ideas from logic programming in order to provide a declarative
method to select and transform semistructured data in XML format. In contrast to pure

1http://www.w3.org/TR/xpath
2http://www.w3.org/XML/Query/
3http://www.w3.org/TR/xslt

2

http://www.w3.org/TR/xpath
http://www.w3.org/XML/Query/
http://www.w3.org/TR/xslt


logic programming, Xcerpt proposes matching with partial term structures for which a
specialized unification procedure, called “simulation unification” [9], has been developed.
Since matching with partial term structures is a powerful feature that avoids many prob-
lems related to the evolution of web data over time, we propose a language with similar
features. However, our language is an embedded domain-specific language (eDSL). Due to
the embedding into the functional logic programming language Curry [21], our language
for XML processing has the following features and advantages:

• The selection and transformation of incompletely specified XML data is supported.

• Due to the embedding into a universal programming language, the selected or trans-
formed data can be directly used in the application program.

• Due to the use of advanced functional logic programming features, the implementa-
tion is straightforward and can be easily extended with new features. Actually, this
paper contains the complete source code of the implementation.

• The direct implementation in a declarative language results in immediate correctness
proofs of the implementation.

In the following, we present our language for XML processing together with their imple-
mentation. Since the implementation exploits features of modern functional logic pro-
gramming languages, we review them in the next section before presenting our eDSL.

2 Functional Logic Programming and Curry

Curry [21] is a declarative multi-paradigm language combining features from functional
programming (demand-driven evaluation, parametric polymorphism, higher-order func-
tions) and logic programming (computing with partial information, unification, con-
straints). Recent surveys are available in [6, 18]. The syntax of Curry is close to Haskell4

[23]. In addition, Curry allows free (logic) variables in conditions and right-hand sides of
defining rules. The operational semantics is based on an optimal evaluation strategy [2]
which is a conservative extension of lazy functional programming and (concurrent) logic
programming.

A Curry program consists of the definition of data types and operations on these
types. Note that in a functional logic language operations might yield more than one
result on the same input due to the logic programming features. Thus, Curry operations
are not functions in the classical mathematical sense so that they are sometimes called
“nondeterministic functions” [14]. Nevertheless, a Curry program has a purely declarative
semantics where nondeterministic operations are modeled as set-valued functions (to be
more precise, down-closed partially ordered sets are used as target domains in order to
cover non-strictness, see [14] for a detailed account of this model-theoretic semantics).

For instance, Curry contains a choice operation defined by:

4Variables and function names usually start with lowercase letters and the names of type and data
constructors start with an uppercase letter. The application of f to e is denoted by juxtaposition (“f e”).

3



x ? _ = x

_ ? y = y

Thus, the expression “0 ? 1” has two values: 0 and 1. If expressions have more than
one value, one wants to select intended values according to some constraints, typically
in conditions of program rules. A rule has the form “f t1 . . . tn | c = e” where the
(optional) condition c is a constraint, i.e., an expression of the built-in type Success. For
instance, the trivial constraint success is a value of type Success that denotes the always
satisfiable constraint. Thus, we say that a constraint c is satisfied if it can be evaluated
to success. An equational constraint e1 =:= e2 is satisfiable if both sides e1 and e2 are
reducible to unifiable values. Furthermore, if c1 and c2 are constraints, c1 & c2 denotes
their concurrent conjunction (i.e., both argument constraints are concurrently evaluated).

As a simple example, consider the following Curry program which defines a polymor-
phic data type for lists and operations to compute the concatenation of lists and the last
element of a list:5

data List a = [] | a : List a --[a] denotes "List a"

-- "++" is a right-associative infix operator

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] → a

last xs | (ys ++ [z]) =:= xs

= z where ys,z free

Logic programming is supported by admitting function calls with free variables (e.g.,
(ys++[z]) in the rule defining last) and constraints in the condition of a defining rule.
In contrast to Prolog, free variables need to be declared explicitly to make their scopes
clear (e.g., “where ys,z free” in the example). A conditional rule is applicable if its
condition is satisfiable. Thus, the rule defining last states in its condition that z is the
last element of a given list xs if there exists a list ys such that the concatenation of ys
and the one-element list [z] is equal to the given list xs.

The combination of functional and logic programming features has led to new design
patterns [3] and better abstractions for application programming, e.g., as shown for pro-
gramming with databases [7, 13], GUI programming [15], web programming [16, 17, 20],
or string parsing [12]. In this paper, we show how to exploit these combined features to
implement an eDSL for XML processing. To make this implementation as simple as pos-
sible, we exploit two more recent features described in the following: functional patterns
[4] and set functions [5].

A fundamental requirement in functional as well as logic languages is that patterns in
the left-hand sides of program rules contain only variables and data constructors. This

5Note that lists are a built-in data type with a more convenient syntax, e.g., one can write [x,y,z]

instead of x:y:z:[] and [a] instead of the list type “List a”.

4



excludes rules like

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

stating the associativity property of list concatenation. This restriction is the key to
construct efficient evaluation strategies [18]. However, in a functional logic language
one can relax this requirement and allow expressions containing defined operations in
patterns as an abbreviation for a (potentially infinite) set of “standard” patterns. A
pattern containing defined operations is called functional pattern. For instance,

last (xs ++ [e]) = e

is a rule with the functional pattern (xs++[e]) stating that last is reducible to e provided
that the argument can be matched against some value of (xs++[e]) where xs and e are
free variables. By instantiating xs to arbitrary lists, the value of (xs++[e]) is any list
having e as its last element. The semantics of functional patterns can be defined in terms
of standard pattern by interpreting a functional pattern as the set of all constructor terms
that is the result of evaluating (by narrowing [2]) the functional pattern. Thus, the above
rule abbreviates the following (infinite) set of rules:

last [e] = e

last [x1,e] = e

last [x1,x2,e] = e

. . .

As we will see in this paper, functional patterns are a powerful feature to express arbitrary
selections in term structures. In order to assign a reasonable semantics to functional pat-
terns, one need syntactic conditions (like stratification) to ensure meaningful definitions
(e.g., the above rule stating associativity of “++” is not allowed). Detailed requirements
and a constructive implementation of functional patterns by a demand-driven unification
procedure can be found in [4].

If nondeterministic programming techniques are applied, it is sometimes useful to
collect all the values of some expression, e.g., to accumulate all results of a query. A
“set-of-values” operation applied to an arbitrary argument might depend on the degree
of evaluation of the argument, which is difficult to grasp in a non-strict language. Hence,
set functions [5] have been proposed to encapsulate nondeterministic computations in
non-strict functional logic languages. For each defined function f , fS denotes the corre-
sponding set function. In order to be independent of the evaluation order, fS encapsulates
only the nondeterminism caused by evaluating f except for the nondeterminism caused
by evaluating the arguments to which f is applied. For instance, consider the operation
decOrInc defined by

decOrInc x = (x-1) ? (x+1)

Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2, 4}, i.e., the
nondeterminism caused by decOrInc is encapsulated into a set. However, “decOrIncS
(2?5)” evaluates to two different sets {1, 3} and {4, 6} due to its nondeterministic argu-

5



ment, i.e., the nondeterminism caused by the argument is not encapsulated.
As already mentioned, this paper contains the complete source code of our imple-

mentation. Actually, it is a literate program [22], i.e., the paper’s source text is directly
executable. In a literate Curry program, all real program code starts with the special char-
acter “>”. Curry code not starting with “>”, e.g., the example code shown so far, is like
a comment and not required to run the program. To give an example of executable code,
we show the declaration of the module XCuery for XML processing in Curry developed in
this paper:

> module XCuery where

>

> import XML

Thus, we import the system module XML which contains an XML parser and the definition
of XML structures in Curry that are explained in the next section.

3 XML Documents

There are two basic methods to represent XML documents in a programming language:
a type-based or a generic representation [25]. In a type-based representation, each tagged
XML structure (like contacts, entry, name etc) is represented as a record structure of
appropriate type according to the XML schema. The advantage of this approach is that
schema-correct XML structures correspond to type-correct record structures. On the
negative side, this representation depends on the given XML schema. Thus, it is hardly
applicable if the schema is not completely known. Moreover, if the schema evolves, the
data types representing the XML structure must be adapted.

Due to these reasons, we prefer a generic representation where any XML document
is represented with one generic structure. Since any XML document is either a struc-
ture with a tag, attributes and embedded XML documents (also call child nodes of the
document), or a text string, one can define the following datatype to represent XML
documents:6

data XmlExp = XText String

| XElem String [(String,String)] [XmlExp]

For instance, the second entry structure of the XML document shown in Figure 1 can be
represented by the data term

XElem "entry" []

[XElem "name" [] [XText "Smith"],

XElem "first" [] [XText "William"],

XElem "nickname" [] [XText "Bill"],

XElem "phone" [] [XText "+1-987-742-9388"]]

6For the sake of simplicity, we ignore other specific elements like comments.

6



Since it could be tedious to write XML documents with these basic data constructors,
one can define some useful abstractions for XML documents:

xtxt :: String → XmlExp

xtxt s = XText s

xml :: String → [XmlExp] → XmlExp

xml t xs = XElem t [] xs

Thus, we can specify the previous document a bit more compact:

xml "entry" [xml "name" [xtxt "Smith"],

xml "first" [xtxt "William"],

xml "nickname" [xtxt "Bill"],

xml "phone" [xtxt "+1-987-742-9388"]]

These definitions together with operations to parse and pretty-print XML documents are
contained in the system module XML of the PAKCS programming environment for Curry
[19]. In principle, these definitions are sufficient for XML processing, i.e., to select and
transform XML documents. For instance, one can extract the name and phone number of
an entry structure consisting of a name, first name and phone number by the following
operation:

getNamePhone

(XElem "entry" []

[XElem "name" [] [XText name],

_,

XElem "phone" [] [XText phone]]) = name++": "++phone

This can be also implemented in a similar way in other functional or logic programming
languages. However, functional logic languages support a nicer way to write such match-
ings. Whereas typical functional or logic languages require the use of data constructors
in patterns, functional patterns allow also to use already defined abstractions in patterns
so that we can define the previous operation also in the following form:

getNamePhone

(xml "entry" [xml "name" [xtxt name],

_,

xml "phone" [xtxt phone]]) = name++": "++phone

This shows how functional patterns improves the readability of pattern matching by
reusing already defined abstractions also in patterns and not only to construct new data
in right-hand sides of program rules.

Apart from these advantages, XML processing operations as defined above have several
disadvantages:

• The exact structure of the XML document must be known in advance. For instance,
the operation getNamePhonematches only entries with three components, i.e., it fails
on both entries shown in Figure 1.

7



• In large XML documents, many parts are often irrelevant if one wants to select
only some specific information entities. However, one has to define an operation to
match the complete document.

• If the structure of the XML document changes (e.g., due to the evolution of the web
services providing these documents), one has to update all patterns in the matching
operations which could be tedious and error prone for large documents.

As a solution to these problems, we propose in the next section appropriate abstractions
that can be used in patterns of operations for XML processing.

4 Abstractions for XML Processing

In order to define reasonable abstractions for XML processing, we start with a wish list.
Since we have seen that exact matchings are not desirable to process semistructured data,
we want to develop a language supporting the following features for pattern matching:

• Partial patterns: allow patterns where only some child nodes are known.

• Unordered patterns: allow patterns where child nodes can appear in any order.

• Patterns at arbitrary depth: allow patterns that are matched at an arbitrary position
in an XML document.

• Negation of patterns: allow patterns defined by the absence of tags or provide default
values for tags that are not present in the given XML document.

• Transformation: generate new structures from matched patterns.

• Collect matchings: accumulate results in a newly generated structure.

In the following, we show how these features can be supported by the use of carefully
defined abstractions as functional patterns and other features of functional logic pro-
gramming.

4.1 Partial Patterns

As we have seen in the example operation getNamePhone above, one would like to select
some child nodes in a document independent of the availability of further components.
Thus, instead of enumerating the list of all child nodes as in the definition above, it would
be preferable to enumerate only the relevant child nodes. We support this by putting the
operator “with” in front of the list of child nodes:

getNamePhone

(xml "entry" (with [xml "name" [xtxt name],

xml "phone" [xtxt phone]])) = name++": "++phone

8



The intended meaning of “with” is that the given child nodes must be present but in
between any number of other elements can also occur.

We can directly implement this operator as follows:7

> with :: Data a => [a] → [a]

> with [] = _

> with (x:xs) = _ ++ x : with xs

Thus, an expression like “with [1,2]” reduces to any list of the form

x1:. . .:xm:1:y1:. . .:yn:2:zs

where the variables xi, yj, zs are fresh logic variables. Due to the semantics of functional
patterns, the definition of getNamePhone above matches any entry structure containing
a name and a phone element as children. Hence, the use of the operation with in patterns
avoids the exact enumeration of all children and makes the program robust against the
addition of further information elements in a structure.

A disadvantage of a definition like getNamePhone above is the fact that it matches only
XML structures with an empty attribute list due to the definition of the operation xml.
In order to support more flexible matchings that are independent of the given attributes
(which are ignored if present), we define the operation

> xml’ :: String → [XmlExp] → XmlExp

> xml’ t xs = XElem t _ xs

For instance, the operation getName defined by

getName (xml’ "entry" (with [xml’ "name" [xtxt n]])) = n

returns the name of an entry structure independent of the fact whether the given docu-
ment contains attributes in the entry or name structures.

4.2 Unordered Patterns

If the structure of data evolves over time, it might happen that the order of elements
changes over time. Moreover, even in some given XML schema, the order of relevant
elements can vary. In order to make the matching independent of a particular order, we
can specify that the required child nodes can appear in any order by putting the operator
“anyorder” in front of the list of child nodes:

getNamePhone

(xml "entry"

(with (anyorder [xml "phone" [xtxt phone],

xml "name" [xtxt name]]))) = name++": "++phone

7The symbol “_” denotes an anonymous variable, i.e., each occurrence of “_” in the right-hand side
of a rule denotes a fresh logic variable.

9



Obviously, the operation anyorder should compute any permutation of its argument list.
In a functional logic language, it can be easily defined as a nondeterministic operation
by inserting the first element of a list at an arbitrary position in the permutation of the
remaining elements:

> anyorder :: [a] → [a]

> anyorder [] = []

> anyorder (x:xs) = insert (anyorder xs)

> where insert [] = [x]

> insert (y:ys) = x:y:ys ? y : insert ys

Thus, the previous definition of getNamePhone matches both entry structures shown in
Figure 1.

4.3 Patterns at Arbitrary Depths

If one wants to select some information in deeply nested documents, it would be tedious
to define the exact matching from the root to the required elements. Instead, it is prefer-
able to allow matchings at an arbitrary depth in a document. Such matchings are also
supported in other languages like XPath since they ease the implementation of queries in
complex structures and support flexibility of the implementation w.r.t. to future structural
changes of the given documents. We support this feature by an operation “deepXml”: if
deepXml is used instead of xml in a pattern, this structure can occur at an arbitrary
position in the given document. For instance, if we define

getNamePhone

(deepXml "entry"

(with [xml "name" [xtxt name],

xml "phone" [xtxt phone]])) = name++": "++phone

and apply getNamePhone to the complete document shown in Figure 1, two results are
(nondeterministically) computed (methods to collect all those results are discussed later).

The implementation of deepXml is similar to with by specifying that deepXml reduces
to a structure where the node is at the root or at some nested child node:

> deepXml :: String → [XmlExp] → XmlExp

> deepXml tag elems = xml tag elems

> deepXml tag elems = xml’ _ (_ ++ [deepXml tag elems] ++ _)

Thus, an expression like “deepXml t cs” reduces to “xml t cs” or to a structure contain-
ing this element at some inner position.

4.4 Negation of Patterns

As mentioned above, in semistructured data some information might not be present in a
given structure, like the email address in the second entry of Figure 1. Instead of failing
on missing information pieces, one wants to have a constructive behavior in application

10



programs. For instance, one could select all entries with a missing email address or one
puts a default nickname in the output if the nickname is missing.

In order to implement such behaviors, one could try to negate matchings. Since
negation is a non-trivial subject in functional logic programming, we propose a much
simpler but practically reasonable solution. We provide an operation “withOthers” which
is similar to “with” but has a second argument that contains the child nodes that are
present but not part of the first argument. Thus, one can use this operation to denote the
“unmatched” part of a document in order to put arbitrary conditions on it. For instance,
if we want to get the name and phone number of an entry that has no email address, we
can specify this as follows:

getNamePhoneWithoutEmail

(deepXml "entry"

(withOthers [xml "name" [xtxt name], xml "phone" [xtxt phone]]

others))

| "email" ‘noTagOf‘ others = name++": "++phone

The useful predicate noTagOf returns true if the given tag is not a tag of all argument
documents (the operation tagOf returns the tag of an XML document):

> noTagOf :: String → [XmlExp] → Bool

> noTagOf tag = all ((/=tag) . tagOf)

Hence, the application of getNamePhoneWithoutEmail to the document in Figure 1 re-
turns a single value.

The implementation of withOthers is slightly different from with since we have to
accumulate the remaining elements that are not part of the first arguments in the second
argument:

> withOthers :: Data a => [a] → [a] → [a]

> withOthers ys zs = withAcc [] ys zs

> where -- Accumulate remaining elements:

> withAcc prevs [] others | others=:=prevs++suffix = suffix

> where suffix free

> withAcc prevs (x:xs) others =

> prefix ++ x : withAcc (prevs++prefix) xs others

> where prefix free

Thus, an expression like “withOthers [1,2] os” reduces to any list of the form

x1:. . .:xm:1:y1:. . .:yn:2:zs

where os = x1:. . .:xm:y1:. . .:yn:zs. If we use this expression as a pattern, the semantics
of functional patterns ensures that this pattern matches any list containing the elements
1 and 2 where the variable os is bound to the list of the remaining elements.

11



4.5 Transformation of Documents

Apart from the inclusion of data selected in XML documents in the application program,
one also wants to implement transformations on documents, e.g., transform an XML
document into a corresponding HTML document. Such transformation tasks are almost
trivial to implement in declarative languages supporting pattern matching by using a
scheme like

transform pattern = newdoc

and applying the transform operation to the given document. For instance, we can
transform an entry document into another XML structure containing the phone number
and full name of the person by

transPhone (deepXml "entry"

(with [xml "name" [xtxt n],

xml "first" [xtxt f],

xml "phone" phone])) =

xml "phonename" [xml "phone" phone,

xml "fullname" [xtxt (f++’ ’:n)]]

If we apply transPhone to the document of Figure 1, we nondeterministically obtain two
new XML documents corresponding to the two entries contained in this document.

4.6 Collect Matchings

If we want to collect all matchings in a given document in a single new document, we have
to encapsulate the nondeterministic computations performed on the input document. For
this purpose, we can exploit set functions described above. Since set functions return an
unordered set of values, we have to transform this value set into an ordered list structure
that can be printed or embedded in another document. This can be done by the predefined
operation sortValues. Thus, if c denotes the XML document shown in Figure 1, we can
use our previous transformation operation to create a complete table of all pairs of phone
numbers and full names by evaluating the expression8

xml "table" (sortValues (transPhoneS c))

which yields the representation of the XML document

<table>

<phonename>

<phone>+1-987-742-9388</phone>

<fullname>William Smith</fullname>

</phonename>

<phonename>

8In the implementation of set functions in the PAKCS environment [19], one has to write (setn f)
for the set function corresponding to the n-ary operation f .

12



<phone>+49-431-8807271</phone>

<fullname>Michael Hanus</fullname>

</phonename>

</table>

Similarly, one can also transform XML documents into HTML documents by exploiting
the HTML library of Curry [16]. Furthermore, one can also nest set functions to accumu-
late intermediate information. As an example, we want to compute a list of all persons
together with the number of their email addresses. For this purpose, we define a matching
rule for an entry document that returns the number of email addresses in this document
by a set function emailOfS :

getEmails (deepXml "entry" (withOthers [xml "name" [xtxt name]] os))

= (name, length (sortValues (emailOfS os)))

where

emailOf (with [xml "email" email]) = email

In order to compute a complete list of all entries matched in a document c, we apply the
set function getEmailsS to collect all results in a list structure:

sortValues (getEmailsS c)

For our example document, this evaluates to [("Hanus",2),("Smith",0)].

4.7 Attribute Matchings

So far we have only defined matchings of XML structures where the attributes are not
taken into account. If we want to match on attribute values, we can also use the generic
matching operators like with, anyorder, or withOthers for this purpose. For instance,
if the first structure of an XML document contains an attribute sex to indicate the
gender, we can select all male first names by the operation

getMaleFirstNames

(deepXml "entry"

(with [XElem "first" (with [("sex","male")]) [xtxt f]])) = f

Here, we use the pattern (with [("sex","male")]) for the attribute list in order to
match on any occurrence of the attribute sex with value male.

5 Properties of the Implementation

5.1 Correctness

As shown in the previous section, the matching operations are quite powerful and can
be directly implemented in a functional logic language. This has the advantage that
the correctness of the implemented matching operations is a direct consequence of the

13



correctness results for functional logic programming. We demonstrate this reasoning by
a simple example.

Consider the following operation to select a name in an entry document:

getName (xml "entry" (with [xml "name" [xtxt n]])) = n

In order to show the correctness of this operation, we have to show the following property
(→∗ denotes the evaluation relation):

Proposition: If xdoc = xml "entry" [...,xml "name" [xtxt n],...], then
getName x →∗ n.

Since the formal definition of the semantics of functional logic programming is outside
the scope of this paper, we provide only a proof sketch. The definition of with implies
that the expression (with [xml "name" [xtxt n]]) evaluates to

x1:. . .:xm:xml "name" [xtxt n]:ys

for any m ≥ 0. Hence, by the semantics of functional patterns,

getName (xml "entry" (x1:. . .:xm:xml "name" [xtxt n]:ys)) = n

is a rule defining getName for any m ≥ 0 (more precisely, we must also evaluate the
operations xml and xtxt, but we omit this detail here). Thus,

getName xdoc →∗ n

is a valid rewrite step.

5.2 Termination

A functional pattern like (with [xml "name" [xtxt n]]) denotes an infinite set of con-
structor patterns, i.e., it denotes all constructor patterns of the form

x1:. . .:xm:xml "name" [xtxt n]:ys

for any m ≥ 0. Thus, it is not obvious that a search for all possible matchings, which is
usually performed by set functions in order to collect all results, will ever terminate. In
principle, general termination criteria for functional logic programs with functional pat-
terns are not yet known. However, it should be noted that the set of constructor patterns
represented by a functional patterns is not blindly enumerated. Actually, the correspond-
ing constructor patterns are generated in a demand-driven manner, i.e., new constructor
patterns are computed only if they are demanded to match the actual argument. Thus,
the structure of the actual argument determines how far the operations in the functional
patterns are evaluated (see [4] for more details about the demand-driven unification pro-
cedure). Hence, the finite size of the actual arguments (i.e., the XML documents) implies
the finiteness of the set of constructor patterns that are computed to match the actual

14



argument.9 Therefore, the search space is finite in all our examples.

5.3 Performance

Our implementation heavily exploits nondeterministic computations, e.g., when matching
partially specified or deep structures, a nondeterministic guessing of appropriate patterns
takes place. This raises the question whether this approach can be used in practice. Since
our main emphasis is on expressiveness (i.e., we want to be able to express selections and
transformations in a declarative rather than navigational manner), we do not intend to
compete in performance with specialized languages for XML processing. For our purpose
it is sufficient, to be practically useful, that there is a reasonable relation between the
time to read an XML document and the time to process it, because each XML document
must be read from a file or network connection before processing it. Our first practical
experiments (using the PAKCS environment [19] which compiles Curry programs into
Prolog programs that are executed by SICStus-Prolog) indicate that the processing time
to select or transform documents is almost equal or smaller than the parsing time. Since
the XML parser is implemented by deterministic operations without any nondeterministic
steps, this shows that the nondeterminism used to implement our matching operators does
not hinder the practical application of our implementation.

6 Related Work

Since the processing of semistructured data is a relevant issue in current application
systems, there are many proposals for specialized languages or embedding languages in
multi-purpose programming languages. We discuss some related approaches in this sec-
tion.

We have already mentioned in the beginning the languages XPath, XQuery, and XSLT
for XML processing supported by the W3C. These languages provide a different XML-
oriented syntax and use a navigational approach to select information rather than the
pattern-oriented approach we proposed. Since these are separate languages, it is more
difficult to use them in application programs written in a general purpose language where
one wants to process data available in the web.

The same is true for the language Xcerpt [8, 10]. It is also a separate XML pro-
cessing language without a close connection to a multi-purpose programming language.
In contrast to XPath, Xcerpt proposes the use of powerful matching constructs to select
information in semistructured documents. Xcerpt supports similar features as our embed-
ded language but provide a more compact syntax due to its independence of a concrete
base language. In contrast to our approach, Xcerpt requires a dedicated implementation

9Obviously, this need not be the case for general functional patterns. For instance, if the pattern
contains a non-terminating operation like “loop = loop”, the functional pattern unification will not
terminate. However, our operations have the property that a data constructor is produced around each
recursive call. Thus, an infinite recursion results in constructor terms of infinite size.

15



based on a specialized unification procedure [9]. The disadvantages of such separate de-
velopments become obvious if one tries to access the implementation of Xcerpt (which
failed at the time of this writing due to inaccessible web pages and incompatible compiler
versions).

HaXML [25] is a language for XML processing embedded in the functional language
Haskell. It provides a rich set of combinators based on content filters, i.e., functions that
map XML data into collections of XML data. This allows an elegant description of many
XML transformations, whereas our rule-based approach is not limited to such transfor-
mations since we have no restrictions on the type of data constructed from successful
matchings.

Caballero et al. [11] proposed the embedding of XPath into the functional logic lan-
guage Toy that has many similarities to Curry. Similarly to our approach, they also
exploit nondeterministic evaluation for path selection. Due to the use of a functional
logic language allowing inverse computations, they also support the generation of test
cases for path expressions, i.e., the generation of documents to which a path expression
can be applied. Nevertheless, their approach is limited to the navigational processing of
XPath rather than a rule-based approach as in our case. The same holds for FnQuery
[24], a domain-specific language embedded in Prolog for the querying and transformation
of XML data.

7 Conclusions

We have presented a rule-based language for processing semistructured data that is im-
plemented and embedded in the functional logic language Curry. The language supports
a declarative description to query and transform such data. It is based on providing op-
erations to describe partial matchings in the data and exploits functional patterns and
set functions for the programming tasks. Due to its embedding into a general-purpose
programming language, it can be used to further process the selected data in application
systems or one can combine semistructured data from different sources. Moreover, it is
easy to extend our language with new features without adapting a complex implementa-
tion.

The simplicity of our implementation together with the expressiveness of our language
demonstrate the general advantages of high-level declarative programming languages. In
order to check the usability of our language, we applied it to extract information provided
by our university information system10 in XML format into a curricula and module infor-
mation system11 that is implemented in Curry. In this application it was quite useful to
specify only partial patterns so that most of the huge amount of information contained
in the XML document could be ignored.

For future work, we intend to apply our language to more examples in order to enrich
the set of useful pattern combinators. Moreover, it would be interesting to generate more

10http://univis.uni-kiel.de/
11http://www-ps.informatik.uni-kiel.de/~mh/studiengaenge/

16

http://univis.uni-kiel.de/
http://www-ps.informatik.uni-kiel.de/~mh/studiengaenge/


efficient implementations by specializing functional patterns (e.g., by partial evaluation
w.r.t. the given definitions, or by exploiting the XML schema if it is precisely known in
advance).

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 2000.

[2] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of the
ACM, Vol. 47, No. 4, pp. 776–822, 2000.

[3] S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of the 6th
International Symposium on Functional and Logic Programming (FLOPS 2002), pp.
67–87. Springer LNCS 2441, 2002.

[4] S. Antoy and M. Hanus. Declarative Programming with Function Patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pp. 6–22. Springer LNCS 3901, 2005.

[5] S. Antoy and M. Hanus. Set Functions for Functional Logic Programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09), pp. 73–82. ACM Press, 2009.

[6] S. Antoy and M. Hanus. Functional Logic Programming. Communications of the
ACM, Vol. 53, No. 4, pp. 74–85, 2010.

[7] B. Braßel, M. Hanus, and M. Müller. High-Level Database Programming in Curry.
In Proc. of the Tenth International Symposium on Practical Aspects of Declarative
Languages (PADL’08), pp. 316–332. Springer LNCS 4902, 2008.

[8] F. Bry and S. Schaffert. A gentle introduction to Xcerpt, a rule-based query and
transformation language for XML. In Proceedings of the International Workshop
on Rule Markup Languages for Business Rules on the Semantic Web (RuleML’02),
2002.

[9] F. Bry and S. Schaffert. Towards a Declarative Query and Transformation Language
for XML and Semistructured Data: Simulation Unification. In Proceedings of the
International Conference on Logic Programming (ICLP’02), pp. 255–270. Springer
LNCS 2401, 2002.

[10] F. Bry, S. Schaffert, and A. Schroeder. A Contribution to the Semantics of Xcerpt, a
Web Query and Transformation Language. In Applications of Declarative Program-
ming and Knowledge Management (INAP/WLP 2004), pp. 258–268. Springer LNCS
3392, 2005.

17



[11] R. Caballero, Y. Garćıa-Ruiz, and F. Sáenz-Pérez. Integrating XPath with the
Functional-Logic Language Toy. Technical Report SIC-05-10, Univ. Complutense
de Madrid, 2010.

[12] R. Caballero and F.J. López-Fraguas. A Functional-Logic Perspective of Parsing.
In Proc. 4th Fuji International Symposium on Functional and Logic Programming
(FLOPS’99), pp. 85–99. Springer LNCS 1722, 1999.

[13] S. Fischer. A Functional Logic Database Library. In Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp.
54–59. ACM Press, 2005.

[14] J.C. González-Moreno, M.T. Hortalá-González, F.J. López-Fraguas, and
M. Rodŕıguez-Artalejo. An approach to declarative programming based on a
rewriting logic. Journal of Logic Programming, Vol. 40, pp. 47–87, 1999.

[15] M. Hanus. A Functional Logic Programming Approach to Graphical User Interfaces.
In International Workshop on Practical Aspects of Declarative Languages (PADL’00),
pp. 47–62. Springer LNCS 1753, 2000.

[16] M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third
International Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

[17] M. Hanus. Type-Oriented Construction of Web User Interfaces. In Proceedings
of the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pp. 27–38. ACM Press, 2006.

[18] M. Hanus. Multi-paradigm Declarative Languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007), pp. 45–75. Springer LNCS
4670, 2007.

[19] M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Avail-
able at http://www.informatik.uni-kiel.de/~pakcs/, 2010.

[20] M. Hanus and S. Koschnicke. An ER-based Framework for Declarative Web Pro-
gramming. In Proc. of the 12th International Symposium on Practical Aspects of
Declarative Languages (PADL 2010), pp. 201–216. Springer LNCS 5937, 2010.

[21] M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2).
Available at http://www.curry-language.org, 2006.

[22] D.E. Knuth. Literate Programming. The Computer Journal, Vol. 27, No. 2, pp.
97–111, 1984.

18

http://www.informatik.uni-kiel.de/~pakcs/
http://www.curry-language.org


[23] S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

[24] D. Seipel, J. Baumeister, and M. Hopfner. Declaratively Querying and Visualizing
Knowledge Bases in XML. In Applications of Declarative Programming and Knowl-
edge Management (INAP/WLP 2004), pp. 16–31. Springer LNCS 3392, 2005.

[25] M. Wallace and C. Runciman. Haskell and XML: Generic Combinators or Type-
Based Translation? In Proc. of the ACM SIGPLAN International Conference on
Functional Programming (ICFP’99), pp. 148–159. ACM Press, 1999.

19



A Further Abstractions

This appendix contains some further abstractions that are not relevant for this paper but
useful for XML processing.

The operation deepXml defined in Section 4.3 can be used to match XML structures
without attributes at an arbitrary position. In order to match structures with a pos-
sibly non-empty list of attributes, we provide (analogously to the definition of xml’ in
Section 4.1) the following operation:

> deepXml’ :: String → [XmlExp] → XmlExp

> deepXml’ tag elems = xml’ tag elems

> deepXml’ tag elems = xml’ _ (_ ++ [deepXml’ tag elems] ++ _)

If we are also interested to match the attributes of a deep XML structure, we can use the
following operation:

> deepXElem :: String → [(String,String)] → [XmlExp]

> → XmlExp

> deepXElem tag attrs elems = XElem tag attrs elems

> deepXElem tag attrs elems = xml’ _ (_ ++ [deepXElem tag attrs elems] ++ _)

For instance, we can use this abstraction to provide a simpler and more general definition
of the operation getMaleFirstNames shown in Section 4.7:

getMaleFirstNames

(deepXElem "first" (with [("sex","male")]) [xtxt f]) = f

When dealing with semistructured data, it could be the case that one wants to use a
default value if some element is not present. For this purpose, we define an operation
optXml such that “optXml t xs ys” evaluates to “xml t xs” if there is no element with
tag t in ys, otherwise the first element of ys with tag t is returned:

> optXml :: String → [XmlExp] → [XmlExp] → XmlExp

> optXml tag elems [] = xml tag elems

> optXml tag elems (x:xs) =

> if tag == tagOf x then x else optXml tag elems xs

One can apply this operation in combination with the matching operator withOthers

to check optional occurrences in the remaining elements. As an example, we transform
the entries of Figure 1 into nickphone structures consisting of a nickname and a phone
number. The definition is similar to transPhone (see Section 4.5) with the difference that
the nickname is assumed to be optional: if it is not present in the given entry structure,
it is generated by concatenating the given names:

transNickPhone

(deepXml "entry"

(withOthers [xml "name" [xtxt n],

xml "first" [xtxt f],

xml "phone" phone]

20



others)) =

xml "nickphone" [optXml "nickname" [xtxt (f++n)] others,

xml "phone" phone]

Thus, if c denotes the XML document of Figure 1, the evaluation of

xml "table" (sortValues (transNickPhoneS c))

yields the representation of the XML document

<table>

<nickphone>

<nickname>Bill</nickname>

<phone>+1-987-742-9388</phone>

</nickphone>

<nickphone>

<nickname>MichaelHanus</nickname>

<phone>+49-431-8807271</phone>

</nickphone>

</table>

21


	Motivation
	Functional Logic Programming and Curry
	XML Documents
	Abstractions for XML Processing
	Partial Patterns
	Unordered Patterns
	Patterns at Arbitrary Depths
	Negation of Patterns
	Transformation of Documents
	Collect Matchings
	Attribute Matchings

	Properties of the Implementation
	Correctness
	Termination
	Performance

	Related Work
	Conclusions
	Further Abstractions

