1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
--- ----------------------------------------------------------------------------
--- This module performs the abstraction of expressions.
--- Depending on the criteria used for abstractions, this module comes to a
--- decision if parts of the given expressions should be further evaluated.
--- This part is crucial to ensure termination of the whole process.
---
--- *Note:* In contrast to the original work we do not remove expressions
--- from the set during abstraction because we want to avoid both
--- re-evaluation of expressions or the loss of the more specific results.
---
--- @author  Elvira Albert, German Vidal, Michael Hanus, Björn Peemöller
--- @version September 2015
--- ----------------------------------------------------------------------------
module Abstract (abstract) where

import AnsiCodes        (yellow)
import Function         (on, second)
import List             (delete, find, maximumBy, sum)
import Maybe            (isJust)
import Pretty           (Doc, (<+>), ($$), (<>), equals, pPrint, text, vsep)
import Utils            (none, sameLength)

import FlatCurry.Types
import FlatCurryGoodies ( branchExprs, completePartCall, isVar, isConsCall
                        , onBranchExps, prelApply, prelude, samePattern, sq
                        , sq', subExprs, isFailed, funcName, getSQ)
import FlatCurryPretty  (ppExp, indent)
import Instance         (instance, instanceOf, msg)
import Normalization    (eqNorm, normalizeExpr)
import Output           (assert, colorWith, debug, traceDetail)
import PevalOpts        (Options (optAbstract, optAssert), Abstraction (..))
import Subst            (ppSubst, rng)

--- The sequence of expressions to be further evaluated.
--- We use a sequence instead of a set to be able to use the anti-transitivity
--- of the well-founded ordering.
type AbsSet = [Expr]

--- Abstraction operator.
--- @param otps - Options passed to partiall evaluator.
--- @param p    - program.
--- @param q    - already abstracted expressions.
--- @param es   - new expressions to be abstracted.
abstract :: Options -> Prog -> AbsSet -> [Expr] -> AbsSet
abstract opts (Prog _ _ _ fs _) q es
  | optAssert opts = originProp $ closednessProp $ orderingProp q'
  | otherwise      = q'
 where
  q' = absAll opts q es
  qes = q ++ es
  -- origin property: abstraction does not "invent" new expressions
  originProp     q0 = assert (originateFrom q0 qes)
                      ("Abstraction: origin property violated\n"
                      ++ pPrint (vsep (map ppExp q0))
                      ++ "\ndoes not originate from\n"
                      ++ pPrint (vsep (map ppExp qes)))
                      q0
  -- closedness property: abstraction subsumes all expressions
  closednessProp q0 = assert (null notClosed)
                      ("Abstraction: closedness property violated\n"
                      ++ pPrint (vsep (map ppExp notClosed))
                      ++ "\nis/are not closed with respect to\n"
                      ++ pPrint (vsep (map ppExp q0)))
                      q0
    where notClosed = filter (not . closed (map funcName fs) q0) qes
  -- ordering property: abstraction fulfills the property of the used ordering
  orderingProp   q0 = case optAbstract opts of
    None -> q0
    WFO  -> assert (decreasing   q0)
            "Abstraction: decreasing size property violated" q0
    WQO  -> assert (nonembedding q0)
            "Abstraction: nonembedding property violated" q0

--- Trace an abstraction action.
traceAbs :: Options -> Doc -> a -> a
traceAbs opts doc x
  = traceDetail opts (colorWith opts yellow str) x
  where str = pPrint (text "Abstraction:" <+> doc) ++ "\n"

--- Trace that the addition of an expression to the set is absorbed
--- because it is already contained in the set.
traceContained :: Options -> AbsSet -> Expr -> AbsSet
traceContained opts q e = traceAbs opts doc q
  where doc = indent (text "Set contains expression" $$ ppExp e)

--- Add a new expression to the set (useful for tracing).
--- The expression is renamed before it is added so that the invariant
--- that all expressions in the set are renamed is asserted.
addNew :: Options -> AbsSet -> Expr -> AbsSet
addNew opts q e = traceAbs opts doc (e' : q)
  where doc = indent (text "Adding expression" $$ ppExp e')
        e'  = normalizeExpr e

--- Is an expression already contained in the set of expressions, either as
--- a renaming or a constructor instance (modulo normalization)?
contained :: Options -> AbsSet -> Expr -> Bool
contained _ q e = normalizeExpr e `elem` q

--- Abstraction of a list of expressions.
absAll :: Options -> AbsSet -> [Expr] -> AbsSet
absAll opts q = foldl (abs opts) q

--- abstraction for terms not within square brackets.
--- See [Albert et al. 1998, p. 803, definition 5.11]
abs :: Options -> AbsSet -> Expr -> AbsSet
abs _    q (Var          _) = q -- ignored
abs _    q (Lit          _) = q -- ignored
abs opts q c@(Comb  _ _ es) = case getSQ c of
  Just e -> absRedex opts q (complete e)
  _      -> absAll   opts q es
abs opts q (Let       bs e) = absAll   opts q (e : map snd bs)
abs opts q (Free       _ e) = abs      opts q e
abs opts q (Or       e1 e2) = absAll   opts q [e1, e2]
abs opts q (Case    _ e bs) = absAll   opts q (e : branchExprs bs)
abs opts q (Typed      e _) = abs      opts q e

--- Abstract a reducible expression, i.e., a call to a user-defined function
--- or an expression surrounded by square brackets.
--- The behaviour is parametric w.r.t. the abstraction mode.
absRedex :: Options -> AbsSet -> Expr -> AbsSet
absRedex opts q e
  | isVar e            = q
  | contained opts q e = if not (evaluable e) then abs opts q (sq' e)
                                              else traceContained opts q e
  | otherwise          = case optAbstract opts of
    None -> addNew opts q e
    WFO  -> absWfo opts q e
    WQO  -> absWqo opts q e

--- Compute whether an expression is evaluable by the partial evaluation
--- semantics at all. In short, evaluable are:
---  * variables which are bound in the surrounding context
---  * function calls
---  * case expressions not applied to an unbound variable
---  * let-bindings where the subjacent expression is evaluable
---  * Non-determinism where any of the subjacent expressions is evaluable
evaluable :: Expr -> Bool
evaluable e0 = eval [] e0
  where
  eval vs (Var         x) = x `elem` vs
  eval _  (Lit         _) = False
  eval vs c@(Comb ct _ _) = case getSQ c of
    Just e -> eval vs e
    _      -> ct == FuncCall -- || any (not . isVar) es
  eval vs (Let      ds e) = eval (vs ++ map fst ds) e
  eval vs (Free     xs e) = eval (vs ++ xs) e
  eval vs (Or      e1 e2) = eval vs e1 || eval vs e2 -- True?
  eval _  (Case    _ _ _) = True
  eval vs (Typed     e _) = eval vs e

--- Complete a partial function call to a regular function call
complete :: Expr -> Expr
complete e = case e of
  Comb ct@(FuncPartCall _) qn es -> completePartCall ct qn es
  _                              -> e

-- -----------------------------------------------------------------------------
-- Abstraction based on a well-founded ordering (size of expression)
-- -----------------------------------------------------------------------------

--- Abstraction based on a well-founded order.
absWfo :: Options -> [Expr] -> Expr -> [Expr]
absWfo opts q e = case firstComparable e q of
  Nothing                    -> addNew opts q e
  Just  c | size e <= size c -> addNew opts q e
          | otherwise        -> absMsg opts q e c

--- Find the best comparable expression in a list of expressions
--- w.r.t the given expression. A comparable must share the same root expression
--- and is the first one found, i.e., the smallest one.
firstComparable :: Expr -> [Expr] -> Maybe Expr
firstComparable e es = case filter (`comparable` e) es of
  []  -> Nothing
  c:_ -> Just c

--- Decreasing size property of the sequence.
decreasing :: AbsSet -> Bool
decreasing []     = True
decreasing (e:es) = all (\e' -> size e' >= size e) (filter (`comparable` e) es)
                 && decreasing es

--- Size of an expression, inducing a well-founded ordering.
--- A variable has a size of zero because we want expression like `1` or `True`
--- to be of a greater size since they contain more information.
--- Integer literals are translated into constructor terms for termination.
size :: Expr -> Int
size (Var         _) = 0
size (Lit         l) = case l of
  Charc  _ -> 1
  Floatc _ -> 1
  Intc   i -> size $ int2Expr i
size c@(Comb _ _ es) = case getSQ c of
  Just e -> size e
  _      -> 1 + sum (map size es)
size (Let      bs e) = 1 + sum (map size (e : map snd bs))
size (Free      _ e) = 1 + size e
size (Or      e1 e2) = 1 + size e1 + size e2
size (Case   _ e bs) = 1 + sum (map size (e : branchExprs bs))
size (Typed     e _) = size e

-- -----------------------------------------------------------------------------
-- Abstraction based on a well-quasi ordering (homeomorphic embedding)
-- -----------------------------------------------------------------------------

--- abstraction based on a well-quasi order.
absWqo :: Options -> [Expr] -> Expr -> [Expr]
absWqo opts q e
  | contained opts q e = traceContained opts q e
  | otherwise          = case embeddedPre e q of
    Nothing -> addNew opts q e
    Just e' -> absMsg opts q e e'

--- Nonembedding property of the sequence
nonembedding :: AbsSet -> Bool
nonembedding []     = True
nonembedding (e:es) = none (\e' -> embedded e' e) (filter (`comparable` e) es)
                   && nonembedding es

--- Well-quasi order based on the embedding.
--- Integer literals are translated into constructor terms for termination.
embeddedPre :: Expr -> AbsSet -> Maybe Expr
embeddedPre e es = find (\e' -> comparable e' e && embedded e' e) es

--- Is the first expression embedded in the second expression?
embedded :: Expr -> Expr -> Bool
embedded e1 e2 = embedded' e1 e2 || embeddedArg e1 e2

--- Is the first expression directly embedded in the second expression, i.e.,
--- the outermost symbols coincide and the arguments are (not necessarily
--- directly) embedded.
embedded' :: Expr -> Expr -> Bool
embedded' ex1 ex2 = case (ex1, ex2) of
  (Var           _, Var           _) -> True
  (Lit  (Charc  x), Lit  (Charc  y)) -> x == y
  (Lit  (Floatc x), Lit  (Floatc y)) -> x == y
  (Lit  (Intc   x), Lit  (Intc   y)) -> embedded (int2Expr x) (int2Expr y)
  (Comb  c1 f1 es1, Comb  c2 f2 es2) -> c1 == c2 && f1 == f2
                                        && allEmbedded es1 es2
  (Let      ds1 e1, Let      ds2 e2) -> length ds1 <= length ds2
                                        && embedded e1 e2
                                        && allEmbedded' (map snd ds1)
                                                        (map snd ds2)
  (Free      xs e1, Free      ys e2) -> length xs <= length ys
                                        && embedded e1 e2
  (Or        e1 f1, Or        e2 f2) -> embedded e1 e2 && embedded f1 f2
  (Case  c1 e1 bs1, Case  c2 e2 bs2) -> c1 == c2 && samePattern bs1 bs2
                                        && allEmbedded (e1 : branchExprs bs1)
                                                       (e2 : branchExprs bs2)
  (Typed    e1 ty1, Typed    e2 ty2) -> ty1 == ty2  && embedded e1 e2
  _                                  -> False

--- Are the expressions in the first list embedded in the expression from
--- the second list, assuming an equal list length?
allEmbedded :: [Expr] -> [Expr] -> Bool
allEmbedded xs ys = and (zipWith embedded xs ys)

--- Are the expressions in the first list embedded in the expression from
--- the second list, assuming that the first list may be shorter
--- than the second list?
allEmbedded' :: [Expr] -> [Expr] -> Bool
allEmbedded' []     _        = True
allEmbedded' (_:_)  []       = False
allEmbedded' (e:es) (e':es') = (embedded e e' && allEmbedded' es es')
                            || allEmbedded' (e:es) es'

-- --- Is the first expression strictly embedded in the second expression?
-- strictEmbedded :: Expr -> Expr -> Bool
-- strictEmbedded e1 e2 = embedded e1 e2 && not (e1 `strictInstanceOf` e2)

--- Is the first expression embedded in some sub-expression
--- of the second expression?
embeddedArg :: Expr -> Expr -> Bool
embeddedArg _ (Var        _) = False
embeddedArg _ (Lit        _) = False
embeddedArg x (Comb  _ _ es) = any (embedded x) es
embeddedArg x (Let     bs e) = any (embedded x) (e : map snd bs)
embeddedArg x (Free     _ e) = x `embedded` e
embeddedArg x (Or     e1 e2) = any (embedded x) [e1, e2]
embeddedArg x (Case  _ e bs) = any (embedded x) (e : branchExprs bs)
embeddedArg x (Typed    e _) = x `embedded` e

-- -----------------------------------------------------------------------------
-- Auxiliary functions for abstraction
-- -----------------------------------------------------------------------------

--- Abstract two expression by computing their most specific generalization.
absMsg :: Options -> AbsSet -> Expr -> Expr -> AbsSet
absMsg opts q new old = traceAbs opts doc res
  where
  res
    -- There is no specific generalization, thus we add the components of e.
    -- Because of case-expressions, free variables and let-bindings, it is
    -- possible that two expressions can not be generalized, for instance
    -- consider the example `listUni`.
    | isVar g      = traceAbs opts (text "Ignoring variable msg" <+> ppExp g)
                   $ abs opts q (sq' new)
    -- The expression to add equals the generalization.
    -- We remove the matching comparable expression to avoid
    -- a non-terminating loop, and add the generalization
    -- as well as the range of the substitutions.
    | eqNorm g new = absAll opts (delete old q) (map sq $ g : rng s1 ++ rng s2)
    -- We add both the generalization and the range of the substitution.
    | otherwise    = absAll opts q (map sq $ g : rng s1 ++ rng s2)

  (g, s1, s2) = msg new old

  doc = vsep $ map indent
    [ text "Generalizing new expression"     $$ ppExp new
    , text "and old expression"              $$ ppExp old
    , text "to most-specific generalization" $$ ppExp g
    , text "with substitutions" $$ text "sigma" <+> equals <+> ppSubst s1
                                $$ text "theta" <+> equals <+> ppSubst s2
    ]

--- Two expressions are comparable if their root symbols coincide.
comparable :: Expr -> Expr -> Bool
comparable ex1 ex2 = case (ex1, ex2) of
  (Var             _, Var             _) -> True
  (Lit             _, Lit             _) -> True
  (Comb FuncCall a [f,_], Comb FuncCall b [g,_])
    -- We don't want to generalize `apply`, therefore we ignore it here.
    | a == prelApply && b == prelApply   -> comparable f g
  (Comb      c1 f1 _, Comb      c2 f2 _) -> c1 == c2 && f1 == f2
  (Free          _ _, Free          _ _) -> True
  (Or            _ _, Or            _ _) -> True
  (Case     c1 _ bs1, Case     c2 _ bs2) -> c1 == c2 && samePattern bs1 bs2
  (Let           _ _, Let           _ _) -> True
  (Typed       _ ty1, Typed       _ ty2) -> ty1 == ty2
  _                                      -> False

--- Translates an integer literal to a constructor term
--- to be able to apply ordering.
int2Expr :: Int -> Expr
int2Expr x | x <  0    = Comb ConsCall (prelude "-") [int2Expr (-x)]
           | x < 10    = digit x
           | otherwise = Comb ConsCall (prelude ":") [digit d, int2Expr m]
  where
    digit n = Comb ConsCall (prelude $ show n) []
    (d, m)  = x `divMod` 10

-- -----------------------------------------------------------------------------
-- closedness test (assertion)
-- -----------------------------------------------------------------------------

--- Does every expression in the abstraction set originate from some
--- expression in the expression list?list of expressions
originateFrom :: AbsSet -> [Expr] -> Bool
originateFrom q es = all (\e -> any (\e' -> complete e' `instanceOf` e) es') q
  where es' = [ e' | e <- es, e' <- subExprs e, not (isVar e') ]

--- `allClosed p q es` computes whether all expressions in `es` are closed
--- with respect to the sequence `q`, where `p` contains the user-defined
--- functions, i.e, functions not contained in `p` are considered primitive.
allClosed :: [QName] -> AbsSet -> [Expr] -> Bool
allClosed p q es = all (closed p q) es

--- `allClosed p q e` computes whether the expression `e` is closed
--- with respect to the sequence `q`, where `p` contains the user-defined
--- functions, i.e, functions not contained in `p` are considered primitive.
closed :: [QName] -> AbsSet -> Expr -> Bool
closed p q e = case e of
  Var _             -> True
  Lit _             -> True
  Comb ct qn es
    | isConsCall ct -> allClosed p q es
    | otherwise     -> case getSQ e of
      Just e'       -> closed p q e' || recClosed q e'
      _             -> isFailed e || recClosed q e ||
                       (isPrimitive p qn && allClosed p q es)
  Let ds e'         -> allClosed p q (e' : map snd ds) || recClosed q e
  Free _ e'         -> closed p q e' || recClosed q e
  Or e1 e2          -> (closed p q e1 && closed p q e2) || recClosed q e
  Case _ e' bs      -> allClosed p q (e' : branchExprs bs) || recClosed q e
  Typed e' _        -> recClosed q e || recClosed q e'
 where
  recClosed []      _  = False
  recClosed (q':qs) e' = case instance (complete e') q' of
    Just s  -> allClosed p q (rng s) || recClosed qs e'
    Nothing -> recClosed qs e'

--- Is a function considered primitive, i.e., not contained in the given
--- list of user-defined functions?
isPrimitive :: [QName] -> QName -> Bool
isPrimitive fs qn = qn `notElem` fs