1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
module Failfree
( proveNonFailingFuncs
) where
import Control.Monad ( unless, when )
import Control.Monad.IO.Class ( liftIO )
import Control.Monad.Trans.Class ( lift )
import Control.Monad.Trans.State ( evalStateT, get, gets, put )
import Data.List ( find, maximum, minimum )
import Analysis.ProgInfo ( ProgInfo, combineProgInfo, lookupProgInfo )
import Analysis.TotallyDefined ( siblingCons )
import Analysis.Types ( Analysis )
import CASS.Server ( analyzeGeneric, analyzePublic )
import Contract.Names ( decodeContractQName, toNonFailQName )
import FlatCurry.Annotated.Goodies
import FlatCurry.Types ( showQName )
import Language.SMTLIB.Goodies
import qualified Language.SMTLIB.Types as SMT
import CheckSMT
import Common
import Curry2SMT
import ESMT
import FlatCurry.Typed.Goodies
import FlatCurry.Typed.Types
import ToolOptions
import TransState
import VerifierState
proveNonFailingFuncs :: TAProg -> VStateM ()
proveNonFailingFuncs prog = do
siblingconsinfo <- lift $ loadAnalysisWithImports siblingCons prog
mapM_ (proveNonFailingFunc siblingconsinfo) $ progFuncs prog
loadAnalysisWithImports ::
(Read a, Show a) => Analysis a -> TAProg -> IO (ProgInfo a)
loadAnalysisWithImports analysis prog = do
maininfo <- analyzeGeneric analysis (progName prog)
>>= return . either id error
impinfos <- mapM (\m -> analyzePublic analysis m >>=
return . either id error)
(progImports prog)
return $ foldr combineProgInfo maininfo impinfos
proveNonFailingFunc :: ProgInfo [(QName,Int)] -> TAFuncDecl -> VStateM ()
proveNonFailingFunc siblingconsinfo fdecl =
unless (isContractOp (funcName fdecl) || isProperty fdecl) $ do
printWhenIntermediate $
"Operation to be analyzed: " ++ snd (funcName fdecl)
incNumAllInStats
let efdecl = etaExpandFuncDecl fdecl
proveNonFailingRule siblingconsinfo (funcName efdecl) (funcType efdecl)
(funcRule efdecl)
proveNonFailingRule :: ProgInfo [(QName,Int)] -> QName -> TypeExpr -> TARule
-> VStateM ()
proveNonFailingRule _ qn ftype (AExternal _ _) = do
let atypes = argTypes ftype
args = zip [1 .. length atypes] atypes
nfcond <- evalStateT (nonfailPreCondExpOf qn ftype args) emptyTransState
unless (nfcond == true) incNumNFCInStats
proveNonFailingRule siblingconsinfo qn@(_,fn) ftype (ARule _ rargs rhs) = do
let st = makeTransState (maximum (0 : map fst rargs ++ allVars rhs) + 1)
(map (\(i,(x,y)) -> (x, y, Just (qn, i, 1)))
(zip [1..] rargs))
(flip evalStateT) st $ do
precondformula <- nonfailPreCondExpOf qn ftype rargs
setAssertion precondformula
unless (precondformula == true) $ lift incNumNFCInStats
unless (precondformula == false) $ proveNonFailExp rhs
where
proveNonFailExp exp = case exp of
AComb _ ct (qf,qfty) args -> do
mapM_ proveNonFailExp args
when (isCombTypeFuncPartCall ct) $ do
nfconds <- lift $ gets $ nfConds . trInfo
let qnnonfail = toNonFailQName qf
maybe
(return ())
(const $ lift $ do
let reason = "due to call '" ++ ppTAExpr exp ++ "'"
addFailedFuncToStats fn reason
printWhenIntermediate $
fn ++ ": POSSIBLY FAILING CALL OF '" ++ snd qf ++ "'")
(find (\fd -> funcName fd == qnnonfail) nfconds)
when (ct==FuncCall) $ do
lift $ printWhenIntermediate $ "Analyzing call to " ++ snd qf
precond <- getAssertion
(bs,_) <- normalizeArgs args
unless (fst qf == "Prelude") $ setNameOfVars qf $ map fst bs
bindexps <- mapM (binding2SMT True) bs
let callargs = zip (map fst bs) (map annExpr args)
nfcondcall <- nonfailPreCondExpOf qf qfty callargs
valid <- if nfcondcall == true
then return (Just True)
else do
lift incFailTestInStats
let title = "SMT script to verify non-failing call of '" ++
snd qf ++ "' in function '" ++ fn ++ "'"
checkNonFailFunc title precond (tand bindexps) nfcondcall
if valid == Just True
then lift $ printWhenIntermediate $
fn ++ ": NON-FAILING CALL OF '" ++ snd qf ++ "'"
else lift $ do
let reason = if valid == Nothing
then "due to SMT error"
else "due to call '" ++ ppTAExpr exp ++ "'"
addFailedFuncToStats fn reason
printWhenIntermediate $
fn ++ ": POSSIBLY FAILING CALL OF '" ++ snd qf ++ "'"
ACase _ _ e brs -> do
proveNonFailExp e
maybe
(do
freshvar <- getFreshVar
let freshtypedvar = (freshvar, annExpr e)
be <- binding2SMT True (freshvar,e)
addToAssertion be
addVarTypes [freshtypedvar]
let misscons = missingConsInBranch siblingconsinfo brs
st <- get
mapM_ (verifyMissingCons freshtypedvar exp) misscons
put st
mapM_ (proveNonFailBranch freshtypedvar) brs
)
(\ (fe,te) -> do
be <- pred2SMT e
st <- get
addToAssertion (tnot be)
proveNonFailExp fe
put st
addToAssertion be
proveNonFailExp te
)
(testBoolCase brs)
AOr _ e1 e2 -> do st <- get
proveNonFailExp e1
put st
proveNonFailExp e2
ALet _ bs e -> do (rbs,re) <- renameLetVars bs e
mapM_ proveNonFailExp $ map snd rbs
proveNonFailExp re
AFree _ fvs e -> do (_,re) <- renameFreeVars fvs e
proveNonFailExp re
ATyped _ e _ -> proveNonFailExp e
AVar _ _ -> return ()
ALit _ _ -> return ()
verifyMissingCons (var,vartype) exp (cons,_) = do
let title = "check missing constructor case '" ++ snd cons ++
"' in function '" ++ fn ++ "'"
lift $ printWhenIntermediate $
title ++ "\nVAR: " ++ show (var,vartype) ++ "\nCASE:: " ++
show (unAnnExpr exp)
lift $ incPatTestInStats
precond <- getAssertion
valid <- checkNonFailFunc ("SMT script to " ++ title) precond true
(tnot (constructorTest False cons (tvar var) vartype))
unless (valid == Just True) $ lift $ do
let reason = if valid == Nothing
then "due to SMT error"
else "maybe not defined on constructor '" ++
showQName cons ++ "'"
addFailedFuncToStats fn reason
printWhenIntermediate $
"POSSIBLY FAILING BRANCH in function '" ++ fn ++
"' with constructor " ++ snd cons
proveNonFailBranch (var,vartype) branch = do
ABranch p e <- renamePatternVars branch
let bpat = pat2SMT (setAnnPattern vartype p)
addToAssertion (tvar var =% bpat)
proveNonFailExp e
missingConsInBranch :: ProgInfo [(QName,Int)] -> [TABranchExpr] -> [(QName,Int)]
missingConsInBranch _ [] =
error "missingConsInBranch: case with empty branches!"
missingConsInBranch _ (ABranch (ALPattern _ _) _ : _) =
error "TODO: case with literal pattern"
missingConsInBranch siblingconsinfo
(ABranch (APattern _ (cons,_) _) _ : brs) =
let othercons = maybe (error $ "Sibling constructors of " ++
showQName cons ++ " not found!")
id
(lookupProgInfo cons siblingconsinfo)
branchcons = map (patCons . branchPattern) brs
in filter ((`notElem` branchcons) . fst) othercons
nonfailPreCondExpOf :: QName -> TypeExpr -> [(Int,TypeExpr)]
-> TransStateM SMT.Term
nonfailPreCondExpOf qf ftype args = do
isCon <- lift $ getOption optConFail
if isCon
then do
(fvars,nfcond) <- nonfailCondExpOf qf ftype args
precond <- preCondExpOf qf (args ++ fvars)
return (simpTerm (tand [nfcond,precond]))
else do
(_,rt) <- nonfailCondExpOf qf ftype args
return rt
nonfailCondExpOf :: QName -> TypeExpr -> [(Int,TypeExpr)]
-> TransStateM ([(Int,TypeExpr)], SMT.Term)
nonfailCondExpOf qf ftype args = do
nfconds <- lift $ gets $ nfConds . trInfo
isError <- lift $ getOption optError
maybe
(predefs qf isError)
(\fd -> let moreargs = funcArity fd - length args in
if moreargs > 0
then do
let etatypes = argTypes (dropArgTypes (length args) ftype)
fvars <- getFreshVarsForTypes (take moreargs etatypes)
rt <- applyFunc fd (args ++ fvars) >>= pred2SMT
return (fvars,rt)
else if moreargs < 0
then error $ "Operation '" ++ snd qf ++
"': nonfail condition has too few arguments!"
else do rt <- applyFunc fd args >>= pred2SMT
return ([],rt) )
(find (\fd -> decodeContractQName (funcName fd) == toNonFailQName qf)
nfconds)
where
predefs qn isError | qn `elem` [pre "failed", pre "=:="] ||
(qn == pre "error" && isError)
= return ([], false)
| otherwise
= return ([], true)
getFreshVarsForTypes :: [TypeExpr] -> TransStateM [(VarIndex, TypeExpr)]
getFreshVarsForTypes types = do
fv <- getFreshVarIndex
let n = length types
vars = take n [fv ..]
tvars = zip vars types
setFreshVarIndex (fv + n)
addVarTypes tvars
return tvars
renameLetVars :: [((VarIndex, TypeExpr), TAExpr)] -> TAExpr
-> TransStateM ([((VarIndex, TypeExpr), TAExpr)], TAExpr)
renameLetVars bindings exp = do
fv <- getFreshVarIndex
let args = map (fst . fst) bindings
minarg = minimum (0 : args)
maxarg = maximum (0 : args)
rnm i = if i `elem` args then i - minarg + fv else i
nargs = map (\ ((v,t),_) -> (rnm v,t)) bindings
setFreshVarIndex (fv + maxarg - minarg + 1)
addVarTypes nargs
return (map (\ ((v,t),be) -> ((rnm v,t), rnmAllVars rnm be)) bindings,
rnmAllVars rnm exp)
renameFreeVars :: [(VarIndex, TypeExpr)] -> TAExpr
-> TransStateM ([(VarIndex, TypeExpr)], TAExpr)
renameFreeVars freevars exp = do
fv <- getFreshVarIndex
let args = map fst freevars
minarg = minimum (0 : args)
maxarg = maximum (0 : args)
rnm i = if i `elem` args then i - minarg + fv else i
nargs = map (\ (v,t) -> (rnm v,t)) freevars
setFreshVarIndex (fv + maxarg - minarg + 1)
addVarTypes nargs
return (map (\ (v,t) -> (rnm v,t)) freevars, rnmAllVars rnm exp)
renamePatternVars :: TABranchExpr -> TransStateM TABranchExpr
renamePatternVars (ABranch p e) = do
if isConsPattern p
then do fv <- getFreshVarIndex
let args = map fst (patArgs p)
minarg = minimum (0 : args)
maxarg = maximum (0 : args)
rnm i = if i `elem` args then i - minarg + fv else i
nargs = map (\ (v,t) -> (rnm v,t)) (patArgs p)
setFreshVarIndex (fv + maxarg - minarg + 1)
addVarTypes nargs
return $ ABranch (updPatArgs (map (\ (v,t) -> (rnm v,t))) p)
(rnmAllVars rnm e)
else return $ ABranch p e
testBoolCase :: [TABranchExpr] -> Maybe (TAExpr,TAExpr)
testBoolCase brs =
if length brs /= 2 then Nothing
else case (brs!!0, brs!!1) of
(ABranch (APattern _ (c1,_) _) e1, ABranch (APattern _ (c2,_) _) e2) ->
if c1 == pre "False" && c2 == pre "True" then Just (e1,e2) else
if c1 == pre "True" && c2 == pre "False" then Just (e2,e1) else Nothing
_ -> Nothing
|