1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
module Rewriting.DefinitionalTree
( DefTree (..)
, dtRoot, dtPattern, hasDefTree, selectDefTrees, fromDefTrees, idtPositions
, defTrees, defTreesL, loDefTrees, phiRStrategy, dotifyDefTree, writeDefTree
) where
import Function (both, on)
import List
import Maybe (catMaybes, listToMaybe, mapMaybe)
import State
import Rewriting.Position (Pos, eps, positions, replaceTerm, (.>), (|>))
import Rewriting.Rules
import Rewriting.Strategy (RStrategy)
import Rewriting.Substitution (applySubst)
import Rewriting.Term
import Rewriting.Unification (unifiable, unify)
data DefTree f = Leaf (Rule f)
| Branch (Term f) Pos [DefTree f]
| Or (Term f) [DefTree f]
dtRoot :: DefTree f -> Either VarIdx f
dtRoot (Leaf r) = rRoot r
dtRoot (Branch pat _ _) = tRoot pat
dtRoot (Or pat _) = tRoot pat
dtPattern :: DefTree f -> Term f
dtPattern (Leaf (l, _)) = l
dtPattern (Branch pat _ _) = pat
dtPattern (Or pat _) = pat
hasDefTree :: Eq f => [DefTree f] -> Term f -> Bool
hasDefTree dts t = any (eqConsPattern t . dtPattern) dts
selectDefTrees :: Eq f => [DefTree f] -> Term f -> [DefTree f]
selectDefTrees dts t = filter (eqConsPattern t . dtPattern) dts
fromDefTrees :: DefTree f -> Int -> [DefTree f] -> DefTree f
fromDefTrees dt _ [] = dt
fromDefTrees dt n dts@(_:_) | n >= 0 && n < length dts = dts !! n
| otherwise = dt
idtPositions :: TRS _ -> [Pos]
idtPositions [] = []
idtPositions trs@((l, _):_) = case l of
TermVar _ -> []
TermCons _ ts -> [[i] | i <- [1 .. length ts], all (isDemandedAt i) trs]
defTrees :: Eq f => TRS f -> [DefTree f]
defTrees = concatMap defTreesS . groupBy eqCons . sortBy eqCons
where
eqCons = on eqConsPattern fst
defTreesL :: Eq f => [TRS f] -> [DefTree f]
defTreesL = defTrees . concat
defTreesS :: Eq f => TRS f -> [DefTree f]
defTreesS [] = []
defTreesS trs@((l, _):_) = case l of
TermVar _ -> []
TermCons c ts -> let arity = length ts
pat = TermCons c (map TermVar [0 .. arity - 1])
pss = permutations (idtPositions trs)
in catMaybes [defTreesS' arity trs ps pat | ps <- pss]
defTreesS' :: Eq f => VarIdx -> TRS f -> [Pos] -> Term f -> Maybe (DefTree f)
defTreesS' _ [] [] _ = Nothing
defTreesS' v [r] [] pat = mkLeaf v pat r
defTreesS' v trs@(_:_:_) [] pat =
mkOr v pat (partition (isDemandedAt 1) trs)
defTreesS' v trs (p:ps) pat = Just (Branch pat p dts)
where
nls = nub [normalizeTerm (l |> p) | (l, _) <- trs]
ts = map (renameTermVars v) nls
pats = [replaceTerm pat p t | t <- ts]
dts = catMaybes [defTreesS' v' (selectRules v' pat') ps pat' |
pat' <- pats,
let v' = max v (maybe 0 (+ 1) (maxVarInTerm pat'))]
selectRules v' t = [r | r@(l, _) <- renameTRSVars v' trs,
unifiable [(l, t)]]
mkLeaf :: Eq f => VarIdx -> Term f -> Rule f -> Maybe (DefTree f)
mkLeaf v pat r = case unify [(l, pat)] of
Left _ -> Nothing
Right sub | pat == applySubst sub l -> Just (Leaf (both (applySubst sub) r'))
| otherwise ->
let (ip:ips) = [p | p <- positions pat, isVarTerm (pat |> p)]
pat' = replaceTerm pat ip (l |> ip)
v' = max v (maybe 0 (+ 1) (maxVarInTerm pat'))
in Just (Branch pat ip (catMaybes [defTreesS' v' [r] ips pat']))
where
r'@(l, _) = renameRuleVars v (normalizeRule r)
mkOr :: Eq f => VarIdx -> Term f -> (TRS f, TRS f) -> Maybe (DefTree f)
mkOr _ _ ([], []) = Nothing
mkOr v pat ([], rs2@(_:_)) = Just (Or pat (mapMaybe (mkLeaf v pat) rs2))
mkOr v pat (rs1@(_:_), []) =
case intersect (idtPositions rs1) (varPositions pat) of
[] -> Just (Or pat (mapMaybe (mkLeaf v pat) rs1))
ps -> defTreesS' v rs1 ps pat
mkOr v pat (rs1@(_:_), rs2@(_:_)) =
let vps = varPositions pat
mdts = [defTreesS' v rs (intersect (idtPositions rs) vps) pat |
rs <- [rs1, rs2]]
in Just (Or pat (catMaybes mdts))
varPositions :: Term _ -> [Pos]
varPositions (TermVar _) = []
varPositions (TermCons _ ts) = [[i] | i <- [1 .. length ts],
isVarTerm (ts !! (i - 1))]
loDefTrees :: Eq f => [DefTree f] -> Term f -> Maybe (Pos, [DefTree f])
loDefTrees [] _ = Nothing
loDefTrees dts@(_:_) t = listToMaybe (loDefTrees' eps t)
where
loDefTrees' _ (TermVar _) = []
loDefTrees' p c@(TermCons _ ts)
| hasDefTree dts c = [(p, selectDefTrees dts c)]
| otherwise = [lp | (p', t') <- zip [1..] ts,
lp <- loDefTrees' (p .> [p']) t']
phiRStrategy :: Eq f => Int -> RStrategy f
phiRStrategy n trs t =
let dts = defTrees trs
in case loDefTrees dts t of
Nothing -> []
Just (_, []) -> []
Just (p, dts'@(dt:_)) ->
case phiRStrategy' n dts (t |> p) (fromDefTrees dt n dts') of
Nothing -> []
Just p' -> [p .> p']
phiRStrategy' :: Eq f => Int -> [DefTree f] -> Term f -> DefTree f -> Maybe Pos
phiRStrategy' _ _ t (Leaf (l, _))
| unifiable [(l', t)] = Just eps
| otherwise = Nothing
where
l' = maybe l (\v -> renameTermVars (v + 1) l) (maxVarInTerm t)
phiRStrategy' _ _ (TermVar _) (Branch _ _ _) = Nothing
phiRStrategy' n dts t@(TermCons _ _) (Branch _ p dts') =
case t |> p of
TermVar _ -> Nothing
tp@(TermCons _ _) -> case selectDefTrees dts tp of
[] ->
case find (\dt -> eqConsPattern tp (dtPattern dt |> p)) dts' of
Nothing -> Nothing
Just dt -> phiRStrategy' n dts t dt
x@(dt:_) -> case phiRStrategy' n dts tp (fromDefTrees dt n x) of
Nothing -> Nothing
Just p' -> Just (p .> p')
phiRStrategy' _ _ _ (Or _ _) = Nothing
type Node f = (Int, Maybe Pos, Term f)
type Edge f = (Bool, Node f, Node f)
type Graph f = ([Node f], [Edge f])
toGraph :: DefTree f -> Graph f
toGraph dt = fst (fst (runState (toGraph' dt) 0))
where
toGraph' (Leaf (l, r)) = newIdx `bindS`
\i -> let n = (i, Nothing, l)
in mapS (ruleEdge n) [r] `bindS` addNode n
toGraph' (Branch pat p dts) = newIdx `bindS`
\i -> let n = (i, Just p, pat)
in mapS (branchEdge n) dts `bindS` addNode n
toGraph' (Or pat dts) = newIdx `bindS`
\i -> let n = (i, Nothing, pat)
in mapS (branchEdge n) dts `bindS` addNode n
addNode n gs = let (ns, es) = unzip gs
in returnS ((n : concat ns, concat es), n)
branchEdge n1 dt' = toGraph' dt' `bindS`
\((ns, es), n2) -> returnS (ns, (False, n1, n2):es)
ruleEdge n1 t = newIdx `bindS` \i -> let n = (i, Nothing, t)
in returnS ([n], [(True, n1, n)])
newIdx = getS `bindS` \i -> putS (i + 1) `bindS_` returnS i
showTermWithPos :: (f -> String) -> (Maybe Pos, Term f) -> String
showTermWithPos s = showTP False
where
showTerm' _ (TermVar v) = showVarIdx v
showTerm' b (TermCons c ts) = case ts of
[] -> s c
[l, r] -> parensIf b (showTerm' True l ++ " " ++ s c ++ " "
++ showTerm' True r)
_ -> s c ++ "(" ++ intercalate "," (map (showTerm' False) ts) ++ ")"
showTP b (Nothing, t) = showTerm' b t
showTP b (Just [], t) = "<u>" ++ showTerm' b t ++ "</u>"
showTP _ (Just (_:_), TermVar v) = showVarIdx v
showTP b (Just (p:ps), TermCons c ts) =
case [(if i == p then Just ps else Nothing, t) |
(i, t) <- zip [1..] ts] of
[] -> s c
[l, r] -> parensIf b (showTP True l ++ " " ++ s c ++ " "
++ showTP True r)
ts' -> s c ++ "(" ++ intercalate "," (map (showTP False) ts') ++ ")"
dotifyDefTree :: (f -> String) -> DefTree f -> String
dotifyDefTree s dt = "digraph definitional_tree {\n"
++ " graph [margin=0.0];\n"
++ " node [fontname=\"Menlo\",fontsize=10.0,shape=box];\n"
++ unlines (map showNode ns)
++ " edge [fontname=\"Menlo\",fontsize=7.0,arrowhead=none];\n"
++ unlines (map showEdge es)
++ "}"
where
(ns, es) = toGraph dt
showNode (n, p, t) =
" " ++ showVarIdx n ++ " [label=<" ++ showTermWithPos s (p, t) ++ ">];"
showEdge (b, (n1, _, _), (n2, _, _)) =
let opts = if b then " [arrowhead=normal];" else ";"
in " " ++ showVarIdx n1 ++ " -> " ++ showVarIdx n2 ++ opts
writeDefTree :: (f -> String) -> DefTree f -> String -> IO ()
writeDefTree s dt fn = writeFile fn (dotifyDefTree s dt)
parensIf :: Bool -> String -> String
parensIf b s = if b then "(" ++ s ++ ")" else s |