sourcecode:
|
module AbstractCurry.Pretty
( Qualification, Options, LayoutChoice(..)
, defaultOptions
, setPageWith, setIndentWith
, setNoQualification, setFullQualification, setImportQualification
, setOnDemandQualification, setShowLocalSigs
, setModName, setLayoutChoice
, showCProg, prettyCurryProg, ppCurryProg
, ppMName, ppExports, ppImports
, ppCOpDecl, ppCTypeDecl, ppCFuncDecl, ppCFuncDeclWithoutSig, ppCRhs
, ppCFuncSignature, ppCQualTypeExpr, ppCTypeExpr, ppCRules, ppCRule
, ppCPattern, ppCLiteral, ppCExpr
, ppCStatement, ppQFunc, ppFunc, ppQType, ppType)
where
import AbstractCurry.Select hiding (varsOfLDecl, varsOfFDecl, varsOfStat)
import AbstractCurry.Types
import AbstractCurry.Transform (typesOfCurryProg, funcsOfCurryProg)
import Data.Function (on)
import Data.List (partition, union, scanl, last, nub, (\\))
import Data.Maybe (isJust, fromJust)
import Text.Pretty hiding ( list, listSpaced, tupled, tupledSpaced
, set , setSpaced )
import Prelude hiding ( empty )
type Collection a = [a]
data Qualification
= Full -- ^ Fully qualify every identifier, including those of the
-- processed module and Prelude.
| Imports -- ^ Fully qualify external identifiers, do not qualify local
-- identifiers and those of Prelude.
| OnDemand -- ^ Fully qualify only identifiers which need to be.
| None -- ^ Do not qualify any function.
deriving Eq
--- The choice for a generally preferred layout.
--- @cons PreferNestedLayout - prefer a layout where the arguments of
--- long expressions are vertically aligned
--- @cons PreferFilledLayout - prefer a layout where the arguments of
--- long expressions are filled as long as possible
--- into one line
data LayoutChoice = PreferNestedLayout -- ^ Prefer
-- a f a
-- + b respectively b
-- + ... c
-- if an expression does not fit the page
| PreferFilledLayout -- ^ Prefer
-- a + b f a b
-- + c + d respectively c d
-- if an expression does not fit the page
data Options = Options
{ pageWidth :: Int
, indentationWidth :: Int
, qualification :: Qualification
, moduleName :: String
{- show signature of local functions or not -}
, showLocalSigs :: Bool
, layoutChoice :: LayoutChoice
{- A collection of all to this module visible types (i.e. all imported
[prelude too] and self defined types) -- used to determine how to qualify,
if Qualification`OnDemand` was chosen. -}
, visibleTypes :: Collection QName
{- A collection of all to this module visible functions and constructors
(i.e. all imported [prelude too] and self defined ones) -- used to
determine how to qualify, if Qualification `OnDemand` was chosen. -}
, visibleFunctions :: Collection QName
{- A collection of currently visible (depending on context) variables.
Used to determine how to qualify, if Qualification `OnDemand` was chosen.
-}
, visibleVariables :: Collection CVarIName
}
--- The default options to pretty print a module. These are:
--- * page width: 78 characters
--- * indentation width: 2 characters
--- * show local signatures: False
--- * qualification method: qualify all imported names (except prelude names)
--- * layout choice: prefer nested layout (see 'LayoutChoice')
--- These options can be changed by corresponding setters
--- ('setPageWith', 'setIndentWith', `setShowLocalSigs`, `set...Qualification`, 'setLayoutChoice').
---
--- Note: If these default options are used for pretty-print operations
--- other than 'prettyCurryProg' or 'ppCurryProg', then one has to set
--- the current module name explicitly by 'setModName'!
defaultOptions :: Options
defaultOptions =
Options { pageWidth = 78
, indentationWidth = 2
, qualification = Imports
, moduleName = ""
, showLocalSigs = False
, layoutChoice = PreferNestedLayout
, visibleTypes = emptyCol
, visibleFunctions = emptyCol
, visibleVariables = emptyCol }
--- Sets the page width of the pretty printer options.
setPageWith :: Int -> Options -> Options
setPageWith pw o = o { pageWidth = pw }
--- Sets the indentation width of the pretty printer options.
setIndentWith :: Int -> Options -> Options
setIndentWith iw o = o { indentationWidth = iw }
--- Whether or not type signatures of local functions should be shown.
--- In some instances, it might be necessary to show the signature
--- of a local function, e.g., if the function's type cannot be inferred.
setShowLocalSigs :: Bool -> Options -> Options
setShowLocalSigs ls o = o { showLocalSigs = ls }
--- Sets the qualification method to be used to print identifiers to
--- "import qualification" (which is the default).
--- In this case, all identifiers imported from other modules (except
--- for the identifiers of the prelude) are fully qualified.
setImportQualification :: Options -> Options
setImportQualification o = o { qualification = Imports }
--- Sets the qualification method to be used to print identifiers to
--- "unqualified".
--- In this case, no identifiers is printed with its module qualifier.
--- This might lead to name conflicts or unintended references
--- if some identifiers in the pretty-printed module are in conflict
--- with imported identifiers.
setNoQualification :: Options -> Options
setNoQualification o = o { qualification = None }
--- Sets the qualification method to be used to print identifiers to
--- "fully qualified".
--- In this case, every identifiers, including those of the processed module
--- and the prelude, are fully qualified.
setFullQualification :: Options -> Options
setFullQualification o = o { qualification = Full }
--- Sets the qualification method to be used to print identifiers to
--- "qualification on demand".
--- In this case, an identifier is qualified only if it is necessary
--- to avoid a name conflict, e.g., if a local identifier has the same
--- names as an imported identifier. Since it is necessary to know
--- the names of all identifiers defined in the current module (to be pretty
--- printed) and imported from other modules, the first argument
--- is the list of modules consisting of the current module and
--- all imported modules (including the prelude).
--- The current module must always be the head of this list.
setOnDemandQualification :: [CurryProg] -> Options -> Options
setOnDemandQualification mods o =
setRelatedMods mods (o { qualification = OnDemand })
--- Sets the name of the current module in the pretty printer options.
setModName :: MName -> Options -> Options
setModName m o = o { moduleName = m }
--- Sets the preferred layout in the pretty printer options.
setLayoutChoice :: LayoutChoice -> Options -> Options
setLayoutChoice lc o = o { layoutChoice = lc }
--- Sets the related modules in the pretty printer options. See 'options' to
--- read a specification of "related modules".
setRelatedMods :: [CurryProg] -> Options -> Options
setRelatedMods [] o = o
setRelatedMods (currentMod:imports) o =
o { visibleTypes = vts, visibleFunctions = vfs }
where vts = fromList $ map typeName (types currentMod)
++ collect publicTypeNames
vfs = fromList $ concat [ map funcName $ functions currentMod
, collect publicFuncNames
, map consName $ constructors currentMod
, collect publicConsNames ]
collect proj = foldr union [] $ map proj imports
--- precedence of top level (pattern or application) context -- lowest
tlPrec :: Int
tlPrec = 0
--- precedence of infix (pattern or application) context
infAppPrec :: Int
infAppPrec = 1
--- precedence of standard prefix (pattern or application) context
prefAppPrec :: Int
prefAppPrec = 2
--- precedence of atoms (variables, literals, tuples, lists ...)
highestPrec :: Int
highestPrec = 3
--- Shows a pretty formatted version of an abstract Curry Program.
--- The options for pretty-printing are the 'defaultOptions' (and therefore the
--- restrictions mentioned there apply here too).
--- @param prog - a curry prog
--- @return a string, which represents the input program `prog`
showCProg :: CurryProg -> String
showCProg = prettyCurryProg defaultOptions
--- Pretty-print the document generated by 'ppCurryProg', using the page width
--- specified by given options.
prettyCurryProg :: Options -> CurryProg -> String
prettyCurryProg opts cprog = showWidth (pageWidth opts) $ ppCurryProg opts cprog
--- Pretty-print a CurryProg (the representation of a program, written in Curry,
--- using AbstractCurry) according to given options.
--- This function will overwrite the module name given by options
--- with the name specified as the first component of `CurryProg`.
--- The list of imported modules is extended to all modules mentioned
--- in the program if qualified pretty printing is used.
--- This is necessary to avoid errors w.r.t. names re-exported by modules.
ppCurryProg :: Options -> CurryProg -> Doc
ppCurryProg opts cprog@(CurryProg m ms dfltdecl clsdecls instdecls ts fs os) =
vsepBlank
[ langExtensions
, (nest' opts' $ sep [ text "module" <+> ppMName m,
ppExports opts' clsdecls instdecls ts fs])
</> where_
, ppImports opts' allImports
, vcatMap (ppCOpDecl opts') os
, ppCDefaultDecl opts' dfltdecl
, vsepBlankMap (ppCClassDecl opts') clsdecls
, vsepBlankMap (ppCInstanceDecl opts') instdecls
, vsepBlankMap (ppCTypeDecl opts') ts
, vsepBlankMap (ppCFuncDecl opts') fs ]
where
opts' = opts { moduleName = m }
allModNames = filter (not . null)
(union (nub (map fst (typesOfCurryProg cprog)))
(nub (map fst (funcsOfCurryProg cprog))))
allImports = if qualification opts == None
then ms
else nub (ms ++ allModNames) \\ [m]
langExtensions = vsep $ langMPTC ++ langFunDeps
langFunDeps = if any hasFunDeps clsdecls
then [text "{-# LANGUAGE FunctionalDependencies #-}"]
else []
langMPTC = if any isMultiParamTypeClass clsdecls
then [text "{-# LANGUAGE MultiParamTypeClasses #-}"]
else []
--- Pretty-print a module name (just a string).
ppMName :: MName -> Doc
ppMName = text
--- Pretty-print exports, i.e. all type and function declarations which are
--- public.
--- extract the type and function declarations which are public and gather their
--- qualified names in a list.
ppExports :: Options -> [CClassDecl] -> [CInstanceDecl] -> [CTypeDecl]
-> [CFuncDecl] -> Doc
ppExports opts clsdecls instdecls ts fs
| null clsdecls && null instdecls && null pubTs && null pubFs
= parens empty -- nothing is exported
| null privTs && null privFs && null privCs
= empty -- everything is exported
| otherwise
= filledTupledSpaced $ map tDeclToDoc pubTs ++ map fDeclToDoc pubFs
where
(pubTs, privTs) = partition isPublicTypeDecl ts
(pubFs, privFs) = partition isPublicFuncDecl fs
privCs = filter ((== Private) . consVis) . concatMap typeCons $ ts
isPublicTypeDecl = (== Public) . typeVis
isPublicFuncDecl = (== Public) . funcVis
tDeclToDoc = on' (<>) (ppQTypeParsIfInfix opts . typeName)
(ppConsExports opts . typeCons)
fDeclToDoc = ppQFuncParsIfInfix opts . funcName
-- internal use only
ppConsExports :: Options -> [CConsDecl] -> Doc
ppConsExports opts cDecls
| null pubCs = empty
| null privCs = parens $ dot <> dot
| otherwise = filledTupled $ map cDeclToDoc pubCs
where (pubCs, privCs) = partition isPublicConsDecl cDecls
isPublicConsDecl = (== Public) . consVis
cDeclToDoc = ppQFuncParsIfInfix opts . consName
--- Pretty-print imports (list of module names) by prepending the word "import"
--- to the module name. If the qualification mode is 'Imports' or 'Full',
--- then the imports are declared as `qualified`.
ppImports :: Options -> [MName] -> Doc
ppImports opts imps = vcatMap (\m -> text importmode <+> ppMName m)
(filter (/= "Prelude") imps)
where
importmode = if qualification opts `elem` [Imports,Full]
then "import qualified"
else "import"
--- Pretty-print operator precedence declarations.
ppCOpDecl :: Options -> COpDecl -> Doc
ppCOpDecl _ (COp qn fix p) =
hsep [ppCFixity fix, int p, genericPPName (bquotesIf . not . isInfixId) qn]
--- Pretty-print the fixity of a function.
ppCFixity :: CFixity -> Doc
ppCFixity CInfixOp = text "infix"
ppCFixity CInfixlOp = text "infixl"
ppCFixity CInfixrOp = text "infixr"
--- Pretty-print operator precedence declarations.
ppCDefaultDecl :: Options -> Maybe CDefaultDecl -> Doc
ppCDefaultDecl _ Nothing = empty
ppCDefaultDecl opts (Just (CDefaultDecl texps)) =
text "default" <+> filledTupled (map (ppCTypeExpr opts) texps)
--- Pretty-print a class declaration.
ppCClassDecl :: Options -> CClassDecl -> Doc
ppCClassDecl opts (CClass qn _ ctxt tvs fdeps funcs) =
hsep ([ text "class", ppCContext opts ctxt, ppType qn]
++ map (ppCTVarIName opts) tvs
++ [ppFdeps]
++ [text "where"])
<$!$> indent' opts (vsepBlankMap (ppCFuncClassDecl opts) funcs)
where
ppFdeps | null fdeps = empty
| otherwise = text "|" <+> sep (punctuate comma (map (ppCFunDep opts) fdeps))
-- Pretty-print a functional dependency.
ppCFunDep :: Options -> CFunDep -> Doc
ppCFunDep opts (l, r) = sep (map (ppCTVarIName opts) l)
<+> rarrow
<+> sep (map (ppCTVarIName opts) r)
--- Pretty-print an instance declaration.
ppCInstanceDecl :: Options -> CInstanceDecl -> Doc
ppCInstanceDecl opts (CInstance qn ctxt tes funcs) =
hsep ([ text "instance", ppCContext opts ctxt, ppQType opts qn]
++ map (ppCTypeExpr' 2 opts) tes
++ [text "where"])
<$!$> indent' opts (vsepBlankMap (ppCFuncDeclWithoutSig opts) funcs)
--- Pretty-print type declarations, like `data ... = ...`, `type ... = ...` or
--- `newtype ... = ...`.
ppCTypeDecl :: Options -> CTypeDecl -> Doc
ppCTypeDecl opts (CType qn _ tVars cDecls derivings) =
hsep [ text "data", ppType qn, ppCTVarINames opts tVars
, if null cDecls then empty else ppCConsDecls opts cDecls]
<$!$> ppDeriving opts derivings
ppCTypeDecl opts (CTypeSyn qn _ tVars tExp)
= hsep [ text "type", ppType qn, ppCTVarINames opts tVars
, align $ equals <+> ppCTypeExpr opts tExp]
ppCTypeDecl opts (CNewType qn _ tVars cDecl derivings) =
hsep [ text "newtype", ppType qn, ppCTVarINames opts tVars, equals
, ppCConsDecl opts cDecl]
<$!$> ppDeriving opts derivings
--- Pretty-print deriving clause.
ppDeriving :: Options -> [QName] -> Doc
ppDeriving _ [] = empty
ppDeriving opts [cn] = text " deriving" <+> ppQType opts cn
ppDeriving opts cls@(_:_:_) =
text " deriving" <+> alignedTupled (map (ppQType opts) cls)
--- Pretty-print a list of constructor declarations, including the `=` sign.
ppCConsDecls :: Options -> [CConsDecl] -> Doc
ppCConsDecls opts cDecls =
align . sep $ [equals <+> ppCConsDecl opts (head cDecls)]
++ map ((bar <+>) . (ppCConsDecl opts)) (tail cDecls)
--- Pretty-print a constructor declaration.
ppCConsDecl :: Options -> CConsDecl -> Doc
ppCConsDecl opts (CCons qn _ tExps ) =
hsep [ppFunc qn, hsepMap (ppCTypeExpr' 2 opts) tExps]
ppCConsDecl opts (CRecord qn _ fDecls) =
hsep [ppFunc qn <+> alignedSetSpaced (map (ppCFieldDecl opts) fDecls)]
--- Pretty-print a record field declaration (`field :: type`).
ppCFieldDecl :: Options -> CFieldDecl -> Doc
ppCFieldDecl opts (CField qn _ tExp) = hsep [ ppFunc qn
, doubleColon
, ppCTypeExpr opts tExp ]
--- Pretty-print a document comment.
ppCDocComment :: String -> Doc
ppCDocComment cmt = vsepMap (text . ("--- " ++)) (lines cmt)
--- Pretty-print a function declaration occurring in a class declaration.
ppCFuncClassDecl :: Options -> CFuncDecl -> Doc
ppCFuncClassDecl opts fDecl@(CFunc qn _ _ tExp rs) =
ppCFuncSignature opts qn tExp
<$!$> ppCRulesWithoutExternal funcDeclOpts qn rs
where funcDeclOpts = addFuncNamesToOpts (funcNamesOfFDecl fDecl) opts
ppCFuncClassDecl opts (CmtFunc cmt qn a v tExp rs) =
ppCDocComment cmt <$!$> ppCFuncClassDecl opts (CFunc qn a v tExp rs)
--- Pretty-print a function declaration.
ppCFuncDecl :: Options -> CFuncDecl -> Doc
ppCFuncDecl opts fDecl@(CFunc qn _ _ tExp _) =
ppCFuncSignature opts qn tExp <$!$> ppCFuncDeclWithoutSig opts fDecl
ppCFuncDecl opts (CmtFunc cmt qn a v tExp rs) =
ppCDocComment cmt <$!$> ppCFuncDecl opts (CFunc qn a v tExp rs)
--- Pretty-print a function declaration without signature.
ppCFuncDeclWithoutSig :: Options -> CFuncDecl -> Doc
ppCFuncDeclWithoutSig opts fDecl@(CFunc qn _ _ _ rs) =
ppCRules funcDeclOpts qn rs
where funcDeclOpts = addFuncNamesToOpts (funcNamesOfFDecl fDecl) opts
ppCFuncDeclWithoutSig opts (CmtFunc cmt qn a v tExp rs) =
ppCDocComment cmt <$!$> ppCFuncDeclWithoutSig opts (CFunc qn a v tExp rs)
--- Pretty-print a function signature according to given options.
ppCFuncSignature :: Options -> QName -> CQualTypeExpr -> Doc
ppCFuncSignature opts qn tExp
| isUntyped tExp = empty
| otherwise = nest' opts
$ sep [ genericPPName parsIfInfix qn
, align $ doubleColon <+> ppCQualTypeExpr opts tExp ]
where
isUntyped te = te == CQualType (CContext []) (CTCons (pre "untyped"))
--- Pretty-print a qualified type expression.
ppCQualTypeExpr :: Options -> CQualTypeExpr -> Doc
ppCQualTypeExpr opts (CQualType clsctxt texp) =
ppCContext opts clsctxt <+> ppCTypeExpr opts texp
--- Pretty-print a class context.
ppCContext :: Options -> CContext -> Doc
ppCContext _ (CContext []) = empty
ppCContext opts (CContext [clscon]) =
ppCConstraint opts clscon <+> text "=>"
ppCContext opts (CContext ctxt@(_:_:_)) =
alignedTupled (map (ppCConstraint opts) ctxt) <+> text "=>"
--- Pretty-print a single class constraint.
ppCConstraint :: Options -> CConstraint -> Doc
ppCConstraint opts (cn,ts) =
hsep $ ppQType opts cn : (map (ppCTypeExpr' prefAppPrec opts) ts)
--- Pretty-print a type expression.
ppCTypeExpr :: Options -> CTypeExpr -> Doc
ppCTypeExpr = ppCTypeExpr' tlPrec
-- Internal use only: Pretty-print a type expression and make use of supplied
-- precedence context. The supplied number represents the precedence of the
-- enclosing expression. Higher values mean more precedence, so if the nested
-- expression has lower precedence than the enclosing expression, the nested one
-- has to be enclosed in parentheses.
ppCTypeExpr' :: Int -> Options -> CTypeExpr -> Doc
ppCTypeExpr' _ opts (CTVar tvar) = ppCTVarIName opts tvar
ppCTypeExpr' p opts (CFuncType tExp1 tExp2) =
parensIf (p > tlPrec)
$ sep [ ppCTypeExpr' 1 opts tExp1, rarrow <+> ppCTypeExpr opts tExp2]
ppCTypeExpr' _ opts (CTCons qn) = ppQType opts qn
ppCTypeExpr' p opts texp@(CTApply tcon targ) =
maybe (parensIf (p >= 2) $ ppCTypeExpr' 2 opts tcon
<+> ppCTypeExpr' 2 opts targ)
(\qn -> ppCTypeTConApply qn (argsOfApply texp))
(funOfApply texp)
where
ppCTypeTConApply qn targs
| isListCons qn = brackets . ppCTypeExpr opts . head $ targs -- assume singleton
| isTupleCons qn = alignedTupled $ map (ppCTypeExpr opts) targs
| otherwise = parensIf (p >= 2)
$ ppQType opts qn
<+> hsepMap (ppCTypeExpr' 2 opts) targs
funOfApply te = case te of CTApply (CTCons qn) _ -> Just qn
CTApply tc _ -> funOfApply tc
_ -> Nothing
argsOfApply te = case te of
CTApply (CTCons _) ta -> [ta]
CTApply tc ta -> argsOfApply tc ++ [ta]
_ -> [] -- should not occur
--- Pretty-print a list of type variables horizontally separating them
--- by `space`.
ppCTVarINames :: Options -> [CTVarIName] -> Doc
ppCTVarINames opts = hsepMap (ppCTVarIName opts)
--- Pretty-print a type variable (currently the Int is ignored).
ppCTVarIName :: Options -> CTVarIName -> Doc
ppCTVarIName _ (_, tvar) = text tvar
--- Pretty-print a list of function rules, concatenated vertically.
--- If there are no rules, an external rule is printed.
ppCRules :: Options -> QName -> [CRule] -> Doc
ppCRules opts qn rs
| null rs = genericPPName parsIfInfix qn <+> text "external"
| otherwise = vcatMap (ppCRule opts qn) rs
--- Pretty-print a list of function rules, concatenated vertically.
--- If there are no rules, an empty document is returned.
ppCRulesWithoutExternal :: Options -> QName -> [CRule] -> Doc
ppCRulesWithoutExternal opts qn rs =
if null rs then empty else vcatMap (ppCRule opts qn) rs
--- Pretty-print a rule of a function. Given a function
--- `f x y = x * y`, then `x y = x * y` is a rule consisting of `x y` as list of
--- patterns and `x * y` as right hand side.
ppCRule :: Options -> QName -> CRule -> Doc
ppCRule opts qn rule@(CRule ps rhs) =
(nest' opts $ sep [ ppCPattern opts (CPComb qn ps) {- exploit similarity
between left hand side
of rule and constructor
pattern -}
<+> (case rhs of
CSimpleRhs _ _ -> equals
CGuardedRhs _ _ -> empty )
, ppFuncRhs rhsOpts rhs ] )
$$ if null lDecls
then empty
else indent' opts $ ppWhereDecl whereOpts lDecls
where lDecls = ldeclsOfRule rule
whereOpts = addVarsToOpts (concatMap varsOfPat ps) opts
rhsOpts = last $ optsWithIncreasingNamespaces
varsOfLDecl
funcNamesOfLDecl
lDecls
whereOpts
--- Pretty-print a pattern expression.
ppCPattern :: Options -> CPattern -> Doc
ppCPattern = ppCPattern' tlPrec
-- Internal use only: Pretty-print a pattern expression and make use of supplied
-- precedence context. The supplied number represents the precedence of the
-- enclosing pattern. Higher values mean more precedence, so if the nested
-- pattern has lower precedence than the enclosing pattern, the nested one has
-- to be enclosed in parentheses.
ppCPattern' :: Int -> Options -> CPattern -> Doc
ppCPattern' _ opts (CPVar pvar) = ppCVarIName opts pvar
ppCPattern' _ opts (CPLit lit ) = parensIf (isNegativeLiteral lit) $ ppCLiteral opts lit
ppCPattern' p opts pat@(CPComb qn ps)
| null ps = parsIfInfix qn qnDoc
| isApp qn = parensIf (p >= prefAppPrec)
$ ppCPattern' infAppPrec opts (ps !! 0)
<+> ppCPattern' prefAppPrec opts (ps !! 1)
| isTupleCons qn = filledTupled . map (ppCPattern opts) $ ps
| isFinLis pat = let ps' = fromJust $ extractFiniteListPattern pat
in alignedList . map (ppCPattern opts) $ ps'
| isInfixId qn =
case ps of [l, r] -> parensIf (p >= infAppPrec)
$ hsep [ ppCPattern' p' opts l, qnDoc
, ppCPattern' p' opts r ]
_ -> prefixApp
| otherwise = prefixApp
where qnDoc = ppQFunc opts qn
isApp = (== ("Prelude", "apply"))
p' = if isInfixId qn then infAppPrec else prefAppPrec
prefixApp = parensIf (p >= prefAppPrec) . nest' opts
$ sep [ parsIfInfix qn qnDoc
, align . (case layoutChoice opts of
PreferFilledLayout -> fillSep
PreferNestedLayout -> sep)
. map (ppCPattern' p' opts) $ ps ]
isFinLis = isJust . extractFiniteListPattern
ppCPattern' _ opts (CPAs pvar p)
= hcat [ppCVarIName opts pvar, at, ppCPattern' highestPrec opts p]
ppCPattern' p opts (CPFuncComb qn ps) = ppCPattern' p opts (CPComb qn ps)
ppCPattern' _ opts (CPLazy p ) = tilde <> ppCPattern' highestPrec opts p
ppCPattern' _ opts (CPRecord qn rps) =
ppQFunc opts qn <+> alignedSetSpaced (map (ppCFieldPattern opts) rps)
--- Pretty-print a pattern variable (currently the Int is ignored).
ppCVarIName :: Options -> CVarIName -> Doc
ppCVarIName _ (_, pvar) = text pvar
--- Pretty-print given literal (Int, Float, ...).
ppCLiteral :: Options -> CLiteral -> Doc
ppCLiteral _ (CIntc i) = int i
ppCLiteral _ (CFloatc f) = float f
ppCLiteral _ (CCharc c) = text $ show c
ppCLiteral _ (CStringc s)
| null s = text "\"\"" -- necessary for pakcs
| otherwise = text $ show s
--- Pretty-print a record pattern
ppCFieldPattern :: Options -> CField CPattern -> Doc
ppCFieldPattern opts (qn, p) = ppQFunc opts qn <+> equals <+> ppCPattern opts p
--- Pretty-print the right hand side of a rule (or case expression), including
--- the d sign, where `d` is the relation (as doc) between the left hand side
--- and the right hand side -- usually this is one of `=`, `->`.
--- If the right hand side contains local declarations, they will be pretty
--- printed too, further indented.
ppCRhs :: Doc -> Options -> CRhs -> Doc
ppCRhs d opts rhs = case rhs of
CSimpleRhs exp lDecls ->
(nest' opts $ sep [d, ppCExpr (expAndGuardOpts lDecls) exp])
$$ maybePPlDecls lDecls
CGuardedRhs conds lDecls ->
ppCGuardedRhs (expAndGuardOpts lDecls) d conds
$$ maybePPlDecls lDecls
where expAndGuardOpts ls = last $ optsWithIncreasingNamespaces
varsOfLDecl
funcNamesOfLDecl
ls
opts
maybePPlDecls ls = if null ls
then empty
else indent' opts (ppWhereDecl opts ls)
--- Like 'ppCRhs', but do not pretty-print local declarations.
--- Instead give caller the choice how to handle the declarations. For example
--- the function 'ppCRule' uses this to prevent local declarations from being
--- further indented.
ppFuncRhs :: Options -> CRhs -> Doc
{- No further enrichment of options necessary - it was done in 'ppCRule' -}
ppFuncRhs opts (CSimpleRhs exp _) = ppCExpr opts exp
ppFuncRhs opts (CGuardedRhs conds _) = ppCGuardedRhs opts equals conds
ppCaseRhs :: Options -> CRhs -> Doc
ppCaseRhs = ppCRhs rarrow
--- Pretty-print guard, i.e. the `| cond d exp` part of a right hand side, where
--- `d` is the relation (as doc) between `cond` and `exp` -- usually this is
--- one of `=`, `->`.
ppCGuardedRhs :: Options -> Doc -> [(CExpr, CExpr)] -> Doc
ppCGuardedRhs opts d = align . vvsepMap ppCGuard
where ppCGuard (e1, e2) = sep [ bar <+> ppCExpr opts e1
, d <+> ppCExpr opts e2 ]
--- Pretty-print local declarations . If the second argument is `text "where"`,
--- pretty-print a `where` block. If the second argument is `text "let"`,
--- pretty-print a `let` block without `in`.
ppCLocalDecls :: Options -> Doc -> [CLocalDecl] -> Doc
ppCLocalDecls opts d lDecls =
(d <+>) . align . vvsepMap (ppCLocalDecl lDeclOpts) $ lDecls
where lDeclOpts = last $ optsWithIncreasingNamespaces
varsOfLDecl
funcNamesOfLDecl
lDecls
opts
--- Pretty-print local declarations (the part that follows the `where` keyword).
ppCLocalDecl :: Options -> CLocalDecl -> Doc
ppCLocalDecl opts (CLocalFunc fDecl) =
if showLocalSigs opts
then ppCFuncDecl opts fDecl
else ppCFuncDeclWithoutSig opts fDecl
ppCLocalDecl opts (CLocalPat p rhs) =
hsep [ ppCPattern opts p, ppCRhs equals rhsOpts rhs ]
where rhsOpts = addVarsToOpts (varsOfPat p) opts
ppCLocalDecl opts (CLocalVars pvars) =
(<+> text "free") $ hsep $ punctuate comma $ map (ppCVarIName opts) pvars
--- Pretty-print a `where` block, in which the word `where` stands alone in a
--- single line, above the following declarations.
ppWhereDecl :: Options -> [CLocalDecl] -> Doc
ppWhereDecl opts lDecls = (where_ $$)
. indent' opts
. vvsepMap (ppCLocalDecl lDeclOpts) $ lDecls
where lDeclOpts = last $ optsWithIncreasingNamespaces
varsOfLDecl
funcNamesOfLDecl
lDecls
opts
--- Pretty-print a `let` block without `in`. In contrast to 'ppWhereDecl', the
--- word `let` is in the same line as the first local declaration.
ppLetDecl :: Options -> [CLocalDecl] -> Doc
ppLetDecl opts = ppCLocalDecls opts (text "let")
--- Pretty-print an expression.
ppCExpr :: Options -> CExpr -> Doc
ppCExpr = ppCExpr' tlPrec
-- Internal use only: Pretty-print an expression and make use of supplied
-- precedence context. The supplied number represents the precedence of the
-- enclosing expression. Higher values mean more precedence, so if the nested
-- expression has lower precedence than the enclosing expression, the nested one
-- has to be enclosed in parentheses.
ppCExpr' :: Int -> Options -> CExpr -> Doc
ppCExpr' _ opts (CVar pvar) = ppCVarIName opts pvar
ppCExpr' _ opts (CLit lit ) = parensIf (isNegativeLiteral lit) $ ppCLiteral opts lit
ppCExpr' _ opts (CSymbol qn ) = ppQFuncParsIfInfix opts qn
ppCExpr' p opts app@(CApply f exp)
| isITE app
= parensIf (p > tlPrec)
$ let (c, t, e) = fromJust $ extractITE app
in text "if" <+> (align $ sep [ ppCExpr opts c
, text "then" <+> ppCExpr opts t
, text "else" <+> ppCExpr opts e])
| isTup app = let args = fromJust $ extractTuple app
in alignedTupled (map (ppCExpr opts) args)
| isFinLis app =
let elems = fromJust $ extractFiniteListExp app
in (case layoutChoice opts of
PreferNestedLayout -> alignedList
PreferFilledLayout -> filledList )
(map (ppCExpr opts) elems)
| isInf app
= parensIf (p >= infAppPrec)
$ let (op, l, r) = fromJust $ extractInfix app
in (case layoutChoice opts of
PreferNestedLayout -> ppNestedWay
PreferFilledLayout -> ppFilledWay)
(ppCExpr' infAppPrec opts l)
(ppQFunc opts op)
(ppCExpr' infAppPrec opts r)
| otherwise = parensIf (p >= prefAppPrec)
$ (case layoutChoice opts of
PreferNestedLayout -> ppNestedWay
PreferFilledLayout -> ppFilledWay)
(ppCExpr' infAppPrec opts f)
empty
(ppCExpr' prefAppPrec opts exp)
where isITE = isJust . extractITE
isInf = isJust . extractInfix
isTup = isJust . extractTuple
isFinLis = isJust . extractFiniteListExp
ppNestedWay l sepa r = align . nest 1 $ sep [l, sepa <+> r]
ppFilledWay l sepa r = nest 1 $ fillSep [l, sepa, r]
ppCExpr' p opts (CLambda ps exp) =
parensIf (p > tlPrec) . nest' opts
$ sep [ backslash <> hsepMap (ppCPattern' prefAppPrec opts) ps
<+> rarrow
, ppCExpr expOpts exp]
where expOpts = addVarsToOpts (concatMap varsOfPat ps) opts
ppCExpr' p opts (CLetDecl lDecls exp) =
parensIf (p > tlPrec) . align
{- 'ppLetDecl' itself ensures the correct handling of opts -}
$ sep [ ppLetDecl opts lDecls, text "in" <+> ppCExpr expOpts exp]
where expOpts = last $ optsWithIncreasingNamespaces
varsOfLDecl
funcNamesOfLDecl
lDecls
opts
ppCExpr' p opts (CDoExpr stms) =
parensIf (p > tlPrec)
$ text "do" <+> align (vvsep $ zipWith ppCStatement statOptsList stms)
where statOptsList = optsWithIncreasingNamespaces
varsOfStat
funcNamesOfStat
stms
opts
ppCExpr' _ opts (CListComp exp stms) =
brackets $ hsep [ ppCExpr expOpts exp, bar
, hsep $ punctuate (comma <> space)
(zipWith ppCStatement statOptsList stms)]
where expOpts = last statOptsList
statOptsList = optsWithIncreasingNamespaces
varsOfStat
funcNamesOfStat
stms
opts
ppCExpr' p opts (CCase cType exp cases) =
parensIf (p > tlPrec) . align . nest' opts
$ sep [ ppCCaseType cType <+> ppCExpr opts exp <+> text "of"
, ppCases opts cases]
ppCExpr' p opts (CTyped exp tExp) =
parensIf (p > tlPrec)
$ hsep [ppCExpr opts exp, doubleColon, ppCQualTypeExpr opts tExp]
ppCExpr' _ opts (CRecConstr qn rFields) =
ppQFunc opts qn <+> ppRecordFields opts rFields
ppCExpr' p opts (CRecUpdate exp rFields) = ppCExpr' p opts exp
<+> ppRecordFields opts rFields
ppCStatement :: Options -> CStatement -> Doc
ppCStatement opts (CSExpr exp ) = ppCExpr opts exp
ppCStatement opts (CSPat pat exp) = ppCPattern opts pat
<+> larrow
<+> ppCExpr opts exp
ppCStatement opts (CSLet lDecls ) = ppLetDecl opts lDecls
--- Pretty-print `case`, `fcase` keywords.
ppCCaseType :: CCaseType -> Doc
ppCCaseType CRigid = text "case"
ppCCaseType CFlex = text "fcase"
--- Pretty-print a list of case expressions, i.e. the `p1 -> e1`,...,`pn -> en`,
--- transitions, vertically aligned.
ppCases :: Options -> [(CPattern, CRhs)] -> Doc
ppCases opts = align . vvsepMap (ppCase opts)
--- Pretty-print a case expression.
ppCase :: Options -> (CPattern, CRhs) -> Doc
ppCase opts (p, rhs) = ppCPattern opts p <+> ppCaseRhs rhsOpts rhs
where rhsOpts = addVarsToOpts (varsOfPat p) opts
--- Pretty-print record field assignments like this:
--- { lab1 = exp1, ..., labn expn }
--- if it fits the page, or
--- { lab1 = exp1
--- , ...
--- , labn = expn }
--- otherwise.
ppRecordFields :: Options -> [CField CExpr] -> Doc
ppRecordFields opts = alignedSetSpaced . map (ppRecordField opts)
--- Pretty-print a record field assignment (`fieldLabel = exp`).
ppRecordField :: Options -> CField CExpr -> Doc
ppRecordField opts (qn, exp) = ppQFunc opts qn <+> equals <+> ppCExpr opts exp
--- Pretty-print a QName qualified according to given options.
--- @param visNames - Depending on call, this is the namespace of visible types
--- or of visible functions. Used to determine if `qn` is
--- ambiguous, in case the qualification method 'OnDemand' was
--- chosen
--- @param visVars - The in current context visible variables.
--- @param g - A doc tranformer used to manipulate (f.e. surround with
--- parentheses) the QName, after it was (maybe) qualified.
--- @param opts - The options to use.
--- @param qn - The `QName` to pretty-print.
--- @return A pretty-printed `QName`, maybe qualified (depending on settings).
genericPPQName :: Collection QName
-> Collection CVarIName
-> (QName -> Doc -> Doc)
-> Options
-> QName
-> Doc
genericPPQName visNames visVars g opts qn@(m, f)
| qnIsBuiltIn = name
| null m = name -- assume local declaration
| otherwise =
case qualification opts of
Full -> qName
Imports -> if m == moduleName opts || m == "Prelude"
then name
else qName
OnDemand -> if m == moduleName opts
then name
else odName -- at this point we know qn is imported
None -> name
where qnIsBuiltIn = or (map ($ qn) [ isUnitCons , isListCons
, isTupleCons, isConsCons ])
name = g qn (text f)
qName = g qn $ ppMName m <> dot <> text f
odName = if isShadowed qn || isAmbiguous qn
then qName
else name
isAmbiguous n = anyCol (on' (&&) (sameName n) (diffMod n)) visNames
isShadowed n = anyCol (sameName n) visVars
diffMod = (/=) `on` fst
sameName (_,x) (_,y) = x == y
genericPPName :: (QName -> Doc -> Doc) -> QName -> Doc
genericPPName f qn = f qn $ text . snd $ qn
--- Pretty-print a function name or constructor name qualified according to
--- given options. Use 'ppQType' or 'ppType' for pretty-printing type names.
ppQFunc :: Options -> QName -> Doc
ppQFunc opts = genericPPQName (visibleFunctions opts)
(visibleVariables opts)
(flip const)
opts
--- Like 'ppQFunc', but surround name with parentheses if it is an infix
--- identifier.
ppQFuncParsIfInfix :: Options -> QName -> Doc
ppQFuncParsIfInfix opts = genericPPQName (visibleFunctions opts)
(visibleVariables opts)
parsIfInfix
opts
--- Pretty-print a function name or constructor name non-qualified.
--- Use 'ppQType' or 'ppType' for pretty-printing type names.
ppFunc :: QName -> Doc
ppFunc = genericPPName (flip const)
--- Pretty-print a type (`QName`) qualified according to given options.
ppQType :: Options -> QName -> Doc
ppQType opts = genericPPQName (visibleTypes opts) emptyCol (flip const) opts
--- Like 'ppQType', but surround name with parentheses if it is an infix
--- identifier.
ppQTypeParsIfInfix :: Options -> QName -> Doc
ppQTypeParsIfInfix opts =
genericPPQName (visibleTypes opts) emptyCol parsIfInfix opts
--- Pretty-print a type (`QName`) non-qualified.
ppType :: QName -> Doc
ppType = genericPPName (flip const)
-- Helping function (diagnosis)
--- Check whether an operator is an infix identifier.
isInfixId :: QName -> Bool
isInfixId = all (`elem` "~!@#$%^&*+-=<>:?./|\\") . snd
--- Check whether an identifier represents the unit constructor
isUnitCons :: QName -> Bool
isUnitCons (_, i) = i == "()"
--- Check whether an identifier represents the empty list constructor
isListCons :: QName -> Bool
isListCons (_, i) = i == "[]"
--- Check whether an identifier represents the list constructor `:`
isConsCons :: QName -> Bool
isConsCons (_, i) = i == ":"
--- Check whether an identifier represents a tuple constructor
isTupleCons :: QName -> Bool
isTupleCons (_, i) = i == mkTuple (length i)
where mkTuple n = '(' : replicate (n - 2) ',' ++ ")"
--- Check whether a literal is a negative number.
isNegativeLiteral :: CLiteral -> Bool
isNegativeLiteral lit = case lit of
CIntc i -> i < 0
CFloatc f -> f < 0
_ -> False
--- Check if given application tree represents an if then else construct.
--- If so, return the condition, the "then expression" and the "else expression".
--- Otherwise, return `Nothing`.
extractITE :: CExpr -> Maybe (CExpr, CExpr, CExpr)
extractITE e = case e of
CApply (CApply (CApply (CSymbol ("Prelude","if_then_else"))
cond)
tExp)
fExp -> Just (cond, tExp, fExp)
_ -> Nothing
--- Check if given application tree represents an infix operator application.
--- If so, return the operator, its left and its right argument. Otherwise,
--- return `Nothing`.
extractInfix :: CExpr -> Maybe (QName, CExpr, CExpr)
extractInfix e
= case e of CApply (CApply (CSymbol s)
e1)
e2
| isInfixId s -> Just (s, e1, e2)
_ -> Nothing
--- Check if given application tree represents a tuple contructor application.
--- If so, return the constructor and its arguments in a list. Otherwise, return
--- `Nothing`.
extractTuple :: CExpr -> Maybe [CExpr]
extractTuple = extractTuple' []
where extractTuple' es exp
= case exp of
CApply f e -> extractTuple' (e:es) f
CSymbol s | isTupleCons s -> Just es
_ -> Nothing
--- Check if given application tree represents a finite list `[x1, ..., xn]`.
--- If so, return the list elements in a list. Otherwise, return `Nothing`.
extractFiniteListExp :: CExpr -> Maybe [CExpr]
extractFiniteListExp = extractFiniteListExp' []
where extractFiniteListExp' es exp =
case exp of
CApply (CApply (CSymbol f)
e)
arg | isConsCons f -> extractFiniteListExp' (e:es) arg
CSymbol s | isListCons s -> Just $ reverse es
_ -> Nothing
--- Check if given construct pattern represents a finite list `[x1, ..., xn]`.
--- If so, return the list elements in a list. Otherwise, return `Nothing`.
extractFiniteListPattern :: CPattern -> Maybe [CPattern]
extractFiniteListPattern = extractFiniteListPattern' []
where extractFiniteListPattern' es pat =
case pat of
CPComb qn [e, t] | isConsCons qn
-> extractFiniteListPattern' (e:es) t
CPComb qn [] | isListCons qn
-> Just $ reverse es
_ -> Nothing
-- Helping functions (pretty-printing)
hsepMap :: (a -> Doc) -> [a] -> Doc
hsepMap f = hsep . map f
vcatMap :: (a -> Doc) -> [a] -> Doc
vcatMap f = vcat . map f
vsepMap :: (a -> Doc) -> [a] -> Doc
vsepMap f = vsep . map f
vsepBlankMap :: (a -> Doc) -> [a] -> Doc
vsepBlankMap f = vsepBlank . map f
vvsep :: [Doc] -> Doc
vvsep = compose (<$!$>)
vvsepMap :: (a -> Doc) -> [a] -> Doc
vvsepMap f = vvsep . map f
fillSepMap :: (a -> Doc) -> [a] -> Doc
fillSepMap f = fillSep . map f
encloseSepSpaced :: Doc -> Doc -> Doc -> [Doc] -> Doc
encloseSepSpaced l r s = encloseSep (l <> space) (space <> r) (s <> space)
alignedList :: [Doc] -> Doc
alignedList = encloseSep lbracket rbracket comma
filledList :: [Doc] -> Doc
filledList = fillEncloseSep lbracket rbracket comma
alignedSetSpaced :: [Doc] -> Doc
alignedSetSpaced = encloseSepSpaced lbrace rbrace comma
alignedTupled :: [Doc] -> Doc
alignedTupled = encloseSep lparen rparen comma
filledTupled :: [Doc] -> Doc
filledTupled = fillEncloseSep lparen rparen comma
filledTupledSpaced :: [Doc] -> Doc
filledTupledSpaced = fillEncloseSepSpaced lparen rparen comma
nest' :: Options -> Doc -> Doc
nest' opts = nest (indentationWidth opts)
indent' :: Options -> Doc -> Doc
indent' opts = indent (indentationWidth opts)
bquotesIf :: Bool -> Doc -> Doc
bquotesIf b d = if b then bquotes d else d
parsIfInfix :: QName -> Doc -> Doc
parsIfInfix = parensIf . isInfixId
larrow :: Doc
larrow = text "<-"
where_ :: Doc
where_ = text "where"
nil :: Doc
nil = text "[]"
-- Helping functions (various)
on' :: (b -> b -> c) -> (a -> b) -> (a -> b) -> a -> c
on' comb f g x = f x `comb` g x
-- Helping functions (CRUD functions for Collection)
emptyCol :: Collection a
emptyCol = []
appendCol :: Collection a -> Collection a -> Collection a
appendCol = (++)
anyCol :: (a -> Bool) -> Collection a -> Bool
anyCol = any
fromList :: [a] -> Collection a
fromList = id
-- Helping functions (management of visible names)
addVarsToOpts :: [CVarIName] -> Options -> Options
addVarsToOpts vs o =
o { visibleVariables = fromList vs `appendCol` visibleVariables o }
addFuncNamesToOpts :: [QName] -> Options -> Options
addFuncNamesToOpts ns o =
o { visibleFunctions = fromList ns `appendCol` visibleFunctions o }
addVarsAndFuncNamesToOpts :: [CVarIName] -> [QName] -> Options -> Options
addVarsAndFuncNamesToOpts vs ns = addVarsToOpts vs . addFuncNamesToOpts ns
--- Generates a list of options with increasing numbers of visible variables
--- and function names. Resulting lists are useful to match the scopes of
--- do expressions and list comprehensions, where latter statements see previous
--- variables and functions names, but prior elements do not see subsequent
--- variables and function names.
--- Note that `last $ optsWithIncreasingNamespaces varsOf funcNamesOf xs opts`
--- are options which contain all variables and function names of xs.
--- @param varsOf - a projection function
--- @param funcNamesOf - a projection function
--- @xs - a list [x1, x2, ...] of elements to which the projection functions
--- will be applied
--- @param opts - root options
--- @return a list `[opts0, opts1, opts2, ...]`, where
--- `opts == opts0`,
--- `opts1 == opts0` plus vars and funcNames of `x1`,
--- `opts2 == opts1` plus vars and funcNames of `x2`,
--- ...
optsWithIncreasingNamespaces :: (a -> [CVarIName])
-> (a -> [QName])
-> [a]
-> Options
-> [Options]
optsWithIncreasingNamespaces varsOf funcNamesOf xs opts =
scanl (flip . uncurry $ addVarsAndFuncNamesToOpts) opts varsAndFuncNamesOfXs
where varsAndFuncNamesOfXs = map varsOf xs `zip` map funcNamesOf xs
-- Helping function (gather variables occurring in argument)
--- In contrast to `AbstractCurry.Select.varsOfLDecl`, this function does not
--- include variables of right hand sides.
varsOfLDecl :: CLocalDecl -> [CVarIName]
varsOfLDecl (CLocalFunc f ) = varsOfFDecl f
varsOfLDecl (CLocalPat p _) = varsOfPat p
varsOfLDecl (CLocalVars lvars ) = lvars
--- In contrast to `AbstractCurry.Select.varsOfFDecl`, this function does not
--- include variables of right hand sides.
varsOfFDecl :: CFuncDecl -> [CVarIName]
varsOfFDecl (CFunc _ _ _ _ r) = concatMap varsOfRule r
varsOfFDecl (CmtFunc _ _ _ _ _ r) = concatMap varsOfRule r
where varsOfRule (CRule pats _) = concatMap varsOfPat pats
--- In contrast to `AbstractCurry.Select.varsOfStat`, this function does not
--- include variables of right hand sides.
varsOfStat :: CStatement -> [CVarIName]
varsOfStat (CSExpr _ ) = []
varsOfStat (CSPat p _) = varsOfPat p
varsOfStat (CSLet ld ) = concatMap varsOfLDecl ld
|