definition: |
(+#) :: BinInt -> BinInt -> BinInt Zero +# x = x x@(Pos _) +# Zero = x Pos x +# Pos y = Pos (x +^ y) Pos x +# Neg y = x -^ y x@(Neg _) +# Zero = x Neg x +# Pos y = y -^ x Neg x +# Neg y = Neg (x +^ y) |
demand: |
arguments 1 2 |
deterministic: |
deterministic operation |
documentation: |
--- Adds two BinInts. |
failfree: |
(_, _) |
indeterministic: |
referentially transparent operation |
infix: |
no fixity defined |
iotype: |
{({Zero},_) |-> _ || ({Pos},{Zero}) |-> {Pos} || ({Pos},{Pos}) |-> {Pos} || ({Pos},{Neg}) |-> {Neg,Pos,Zero} || ({Neg},{Zero}) |-> {Neg} || ({Neg},{Pos}) |-> {Neg,Pos,Zero} || ({Neg},{Neg}) |-> {Neg}} |
name: |
+# |
precedence: |
no precedence defined |
result-values: |
_ |
signature: |
BinInt -> BinInt -> BinInt |
solution-complete: |
operation might suspend on free variables |
terminating: |
yes |
totally-defined: |
possibly non-reducible on same data term |