definition: |
(+^) :: Nat -> Nat -> Nat IHi +^ y = succ y -- 1 + n = n + 1 O x +^ IHi = I x -- 2*n + 1 = 2*n + 1 O x +^ O y = O (x +^ y) -- 2*m + 2*n = 2*(m+n) O x +^ I y = I (x +^ y) I x +^ IHi = O (succ x) I x +^ O y = I (x +^ y) I x +^ I y = O (succ x +^ y) |
demand: |
arguments 1 2 |
deterministic: |
deterministic operation |
documentation: |
--- Addition, O(max (m, n)) |
failfree: |
(_, _) |
indeterministic: |
referentially transparent operation |
infix: |
no fixity defined |
iotype: |
{({IHi},_) |-> {I,O} || ({O},{IHi}) |-> {I} || ({O},{O}) |-> {O} || ({O},{I}) |-> {I} || ({I},{IHi}) |-> {O} || ({I},{O}) |-> {I} || ({I},{I}) |-> {O}} |
name: |
+^ |
precedence: |
no precedence defined |
result-values: |
{I,O} |
signature: |
Nat -> Nat -> Nat |
solution-complete: |
operationally complete operation |
terminating: |
yes |
totally-defined: |
reducible on all ground data terms |