CurryInfo: call-analysis-3.2.0 / Analysis

classes:

              
documentation:
----------------------------------------------------------------------------
--- Fixpoint analyzer for call patterns
---
--- @author Michael Hanus
--- @version February 2023
----------------------------------------------------------------------------
name:
Analysis
operations:
abstractCall adomBottom adomShow analysisDir applyPrimDTerm bench callPatternAnalysis checkArgs computeFixpoint concreteDom consDTerm createAnalysisDir cutDTerm dataModule depthDom eqSemInt extendListMap extractStrictness fEqsOfWorkSem genMainCalls getMainCall insertSemEq lessCSpecific lessDSpecific lessSpecificEqCallPattern lessSpecificEqResult main mainCallError matchCTerms matchDTerms ndInfoFileName printProgram printTiming processWorkList prog2DirFile runBench runFixpoint runFixpointWL showCTerm showDTerm showSemInt showStrictness sortFuncInfos strictInfoFileName transformExp transformInt transformNondet transformRules unApply updateSemEq
sourcecode:
import Data.List ( intercalate, nub, replace, sort, sortBy )
import Numeric(readNat)
--import Sort(sortBy,leqString,leqList)
import System.Environment ( getArgs )
import System.IO ( hFlush, stdout )

import System.Directory ( createDirectory, doesDirectoryExist )
import System.FilePath  ( dropExtension, splitFileName, takeDirectory )
--import IO
import FlatCurry.ShowIntMod

import Debug.Profile
import qualified FlatCurry.Types as FC
import qualified  Data.Table.RBTree as Table ( TableRBT, empty, lookup
                                             , toList, update )

import LetDropping
import NondetAnalysis
import ReadFlatTRS
import TRS

----------------------------------------------------------------------------
-- Directories and files to store analysis results
analysisDir :: String
analysisDir = ".curry/analysis"

-- Create analysis directory for a given base file name, if necessary.
createAnalysisDir :: String -> IO ()
createAnalysisDir base = do
  let anadir = takeDirectory base ++ "/" ++ analysisDir
  exanadir <- doesDirectoryExist anadir
  if exanadir then return ()
              else createDirectory anadir

-- Nondet info file for a given module
ndInfoFileName :: String -> String
ndInfoFileName file =
  let (dir,base) = splitFileName file
      basemod = dropExtension base
   in dir ++ "/" ++ analysisDir ++ "/" ++ basemod ++ ".ndinfo"

-- strictness info file for a given module
strictInfoFileName :: String -> String
strictInfoFileName file =
  let (dir,base) = splitFileName file
      basemod = dropExtension base
   in dir ++ "/" ++ analysisDir ++ "/" ++ basemod ++ ".strictinfo"

----------------------------------------------------------------------------
-- Structure to represent abstract domains.
-- An abstract domain has the structure
--   (ADom abottom avar acons matchterms domleq ordleq showaterm)
-- and contains the following components:
-- abottom   : abstract bottom element
-- avar      : maps a free variable (number) into an abstract term
-- acons     : maps a constructor and abstract terms into an abstract term
-- matchterms: abstract matching of terms
-- domleq    : information ordering on abstract terms
-- showaterm : show an abstract term
-- applyprim : possible application of predefined operations
--             (Nothing: not a predefined operation, Just abstract_result)

data ADom a = ADom a
                   (Int -> a)
                   (String -> [a] -> a)
                   ([Term] -> [a] -> Maybe (Sub a))
                   (a -> a -> Bool)
                   (a -> String)
                   (String -> [a] -> Maybe a)

-- Returns bottom element of abstract domain
adomBottom :: ADom a -> a
adomBottom (ADom abottom _ _ _ _ _ _) = abottom

-- Returns "show" operation of abstract domain
adomShow :: ADom a -> (a -> String)
adomShow (ADom _ _ _ _ _ ashow _) = ashow

-- map a function applied to constructor terms
-- into an abstract abstract call w.r.t. a given domain
abstractCall :: ADom a -> (String,[Term]) -> (String,[a])
abstractCall (ADom _ avar acons _ _ _ _) (f,cargs) = (f, map cons2aterm cargs)
 where
  -- map a constructor term into abstract term
  cons2aterm (Var v) = avar v
  cons2aterm (Func Cons c args) = acons c (map cons2aterm args)
  cons2aterm (Func Def _ _) = error "cons2aterm: Func Def occurred"

----------------------------------------------------------------------------
-- Semantic equation (part of an interpretation): f args = result
data SemEq aterm = Eq String [aterm] aterm
 deriving (Eq, Ord)

-- (Abstract) Interpretation: list of semantic equations
type SemInt aterm = [SemEq aterm]

-- Substitutions: first simple implementation as string/value pairs
type Sub a = [(Int,a)]

---------------------------------------------------------------------------
-- Concrete domain: constructor terms

-- Constructor terms with bottom elements:
data CTerm = CBot | CVar Int | CCons String [CTerm]
 deriving (Eq, Ord)

-- pairwise matching of a list of patterns against a list of terms
matchCTerms :: [Term] -> [CTerm] -> Maybe (Sub CTerm)
matchCTerms []     []     = Just []
matchCTerms []     (_:_)  = Nothing
matchCTerms (_:_)  []     = Nothing
matchCTerms (x:xs) (y:ys) = combineSubst (match x y) (matchCTerms xs ys)
 where
  combineSubst Nothing   _         = Nothing
  combineSubst (Just _ ) Nothing   = Nothing
  combineSubst (Just s1) (Just s2) = Just (s1++s2)

  -- match a linear pattern against a term with disjoint variables:
  match :: Term -> CTerm -> Maybe (Sub CTerm)
  match (Var v) t = Just [(v,t)]
  match (Func _ pf pargs) t = case t of
    CBot           -> Nothing
    CVar _         -> Nothing
    CCons tf targs -> if pf==tf then matchCTerms pargs targs else Nothing

-- is bottom term t1 a generalization (i.e., with less information) than t2?
lessCSpecific :: CTerm -> CTerm -> Bool
lessCSpecific CBot _ = True
lessCSpecific (CVar _) _ = False
lessCSpecific (CCons c1 args1) t2 = case t2 of
  CCons c2 args2 -> c1==c2 && all (uncurry lessCSpecific) (zip args1 args2)
  _              -> False

-- show a constructor term
showCTerm :: CTerm -> String
showCTerm CBot = "_"
showCTerm (CVar i) = 'x' : show i
showCTerm (CCons f []) = f
showCTerm (CCons f args@(_:_)) =
  f ++ "(" ++ intercalate "," (map showCTerm args) ++ ")"

-- The structure of the concrete domain:
concreteDom :: ADom CTerm
concreteDom = ADom CBot (error "Cannot handle free variables") CCons
                   matchCTerms lessCSpecific showCTerm (\_ _ -> Nothing)


----------------------------------------------------------------------------
-- Abstract domain: depth-k terms

-- depth-k terms are constructor terms with cut variables:
data DTerm = DBot | DCons String [DTerm] | CutVar
 deriving (Eq, Ord)

-- pairwise matching of a list of patterns against a list of terms
matchDTerms :: [Term] -> [DTerm] -> Maybe (Sub DTerm)
matchDTerms [] [] = Just []
matchDTerms [] (_:_) = Nothing
matchDTerms (_:_) [] = Nothing
matchDTerms (x:xs) (y:ys) = combineSubst (match x y) (matchDTerms xs ys)
 where
  combineSubst Nothing   _         = Nothing
  combineSubst (Just _ ) Nothing   = Nothing
  combineSubst (Just s1) (Just s2) = Just (s1++s2)

  -- match a linear pattern against a term with disjoint variables:
  match :: Term -> DTerm -> Maybe (Sub DTerm)
  match (Var v) t = Just [(v,t)]
  match (Func _ pf pargs) t = case t of
    DBot   -> Nothing
    CutVar -> Just (map (\v->(v,CutVar)) (concatMap varsOf pargs))
    DCons tf targs -> if pf==tf then matchDTerms pargs targs else Nothing

-- apply constructor on depth-k terms
consDTerm :: Int -> String -> [DTerm] -> DTerm
consDTerm maxdepth c args = cutDTerm maxdepth (DCons c args)

-- cut a depth-k term larger than a given depth:
cutDTerm :: Int -> DTerm -> DTerm
cutDTerm _ DBot = DBot
cutDTerm _ CutVar = CutVar
cutDTerm d (DCons c args) | d==0      = CutVar
                          | otherwise = DCons c (map (cutDTerm (d-1)) args)

-- is abstract term t1 a generalization (i.e., with less information) than t2?
lessDSpecific :: DTerm -> DTerm -> Bool
lessDSpecific DBot _ = True
lessDSpecific CutVar t = t==CutVar
lessDSpecific (DCons c1 args1) t2 = case t2 of
  DCons c2 args2 -> c1==c2 && all (uncurry lessDSpecific) (zip args1 args2)
  _              -> False

-- Abstract application of a primitive operation to abstract terms.
-- The result is Nothing if this application is not defined, e.g.,
-- becuase the operation is not a primitive one.
applyPrimDTerm :: String -> [DTerm] -> Maybe DTerm
applyPrimDTerm f args
  | f `elem` allStrictOps
  = if DBot `elem` args
      then Just DBot   -- these primitive operations are strict in all arguments
      else Just CutVar -- otherwise we do not know anything
  | f `elem` fstP2StrictOps
  = if head args == DBot
      then Just DBot  -- strict in first argument
      else Just (args!!1) -- otherwise it is as most defined as second argument
  | f == "failed"
  = Just DBot -- result of failed is always undefined
  | otherwise = Nothing
 where
  -- operations strict in all arguments
  allStrictOps = ["+","-","*","mod","div","<","<=",">",">=","==","/=",
                  "=:=","show","isEmpty"]
  -- operations strict in first argument and projection on second argument
  fstP2StrictOps = ["cond","set1"]

-- show a depth-k term
showDTerm :: DTerm -> String
showDTerm DBot         = "_"
showDTerm CutVar       = "*"
showDTerm (DCons f []) = f
showDTerm (DCons f args@(x:xs))
 | f == ":" && length xs == 1 = -- format list constructor:
   showDTerm x ++ ":" ++ showDTerm (head xs)
 | take 2 f == "(," = -- format tuple constructors:
   "(" ++ intercalate "," (map showDTerm args) ++ ")"
 | otherwise =
   f ++ "(" ++ intercalate "," (map showDTerm args) ++ ")"

-- The structure of the depth-k domain (where the depth is given as an
-- argument):
depthDom :: Int -> ADom DTerm
depthDom k = ADom DBot (const CutVar) (consDTerm k) matchDTerms lessDSpecific
                  showDTerm applyPrimDTerm


------------------------------------------------------------------------------
-- Generic operations:

-- generic equality on interpretations (note that equations are kept ordered)
eqSemInt :: Eq a => SemInt a -> SemInt a -> Bool
eqSemInt = (==)

-- Generic ordered insertion of semantic equations into an interpretation.
-- The first argument is some ordering on terms (compatible with the
-- information ordering on terms). An equation is not inserted
-- if it is already there, i.e., the interpretation is managed as a set.
insertSemEq :: Ord a => SemEq a -> SemInt a -> SemInt a
insertSemEq x []     = [x]
insertSemEq x (y:ys) | x == y    = y : ys
                     | x <= y    = x : y : ys
                     | otherwise = y : insertSemEq x ys

-- Generic ordered insertion of semantic equations into an interpretation
-- where existing equations with less information are removed from the
-- interpretation. Thus, the resulting interpretation contains
-- equations with more specific abstract values.
-- First argument: ordering relation on abstract terms (used to order
--                 all equations of the interpretation)
-- Second argument: less-specific ordering on equations
updateSemEq :: Ord a => (SemEq a -> SemEq a -> Bool)
                     -> SemEq a -> SemInt a -> SemInt a
updateSemEq _              x []     = [x]
updateSemEq lessSpecificEq x (y:ys)
 | x == y             = y : ys
 | lessSpecificEq y x = updateSemEq lessSpecificEq x ys
 | lessSpecificEq x y = y : ys
 | x <= y             = x : y : ys
 | otherwise          = y : updateSemEq lessSpecificEq x ys

-- Is semantic equation e1 less specific than e2 w.r.t. some
-- call pattern? The first argument is the information ordering on terms.
-- A semantic equation is less specific iff all arguments and the result
-- of the equations are pairwise less specific.
lessSpecificEqCallPattern :: (a->a->Bool) -> SemEq a -> SemEq a -> Bool
lessSpecificEqCallPattern lessSpecific (Eq f1 args1 v1) (Eq f2 args2 v2) =
  f1==f2 && all (uncurry lessSpecific) (zip args1 args2) && lessSpecific v1 v2

-- Is semantic equation e1 less specific than e2 w.r.t. their results?
-- The first argument is the information ordering on terms.
-- A semantic equation is less specific iff all arguments are identical
-- and the result of the equations are less specific.
lessSpecificEqResult :: Eq a => (a->a->Bool) -> SemEq a -> SemEq a -> Bool
lessSpecificEqResult lessSpecific (Eq f1 args1 v1) (Eq f2 args2 v2) =
  f1==f2 && args1==args2 && lessSpecific v1 v2

------------------------------------------------------------------------------
-- Transformation on (abstract) interpretations:
-- (transformInt adom insertsem trs mains int)
-- adom      : abstract domain
-- insertsem : operation to insert new semantic equation into an interpretation
-- trs       : term rewriting system
-- mains     : main calls (start interpretation)
-- int       : interpretation to be transformed
-- result: transformed interpretation
transformInt :: Eq a => ADom a -> (SemEq a -> SemInt a -> SemInt a)
                     -> [Rule] -> SemInt a -> SemInt a -> SemInt a
transformInt (ADom abottom avar acons matchterms _ _ applyprim)
             insertsem trs mains int =
  foldr insertsem mains
        (concatMap (\ (Eq fi argsi _) ->
                     maybe (concatMap (applyRule fi argsi) (fRules fi))
                           (\ares -> [Eq fi argsi ares])
                           (applyprim fi argsi))
                   int)
 where
  fRules f = let rules = funcRules f trs
              in if null rules
                 then error ("Rules of operation '"++f++"' not found!")
                 else rules

  applyRule fi argsi (largs,rhs) =
    maybe []
          (\s -> map (Eq fi argsi) (evalInt s int rhs)
                 ++ concatMap (newSemEq s) (fSubterms rhs))
          (matchterms largs argsi)

  newSemEq s (f,args) =
    map (\iargs -> Eq f iargs abottom) (extendListMap (evalInt s int) args)

  -- abstract evaluation of a term w.r.t. a given substitution
  -- and interpretation
  evalInt sub _ (Var v) = [maybe (avar v) id (lookup v sub)]
  evalInt sub eqs (Func Cons c args) =
    map (acons c) (extendListMap (evalInt sub eqs) args)
  evalInt sub eqs (Func Def f args) =
    let evalargs = extendListMap (evalInt sub eqs) args
     in abottom :
        concatMap (\ (Eq fi argsi r) ->
              if any (\eargs->fi==f && eargs==argsi) evalargs then [r] else [])
                  eqs

-- extend list mapping on a list of elements
extendListMap :: (a -> [b]) -> [a] -> [[b]]
extendListMap _ []     = [[]]
extendListMap f (x:xs) = [ y:ys | y <- f x, ys <- extendListMap f xs]


------------------------------------------------------------------------------
-- Runs a simple fixpoint computation w.r.t. a set of abstract initial calls.
runFixpoint :: Eq a => ADom a
            -> (SemEq a -> SemInt a -> SemInt a)
            -> [Rule] -> [(String,[a])] -> Bool
            -> ([SemEq a] -> [SemEq a] -> Bool)
            -> IO (SemInt a)
runFixpoint adom insertsem rules mainacalls withprint semeq = do
  let trm = transformInt adom insertsem rules
                         (foldr insertsem [] (map main2int mainacalls))
  --printProgram rules maincalls
  if withprint then return () else putStr "Iterating:"
  garbageCollect
  pi1 <- getProcessInfos
  fpsem <- computeFixpoint withprint 0 (showSemInt adom) semeq trm []
  getProcessInfos >>= printTiming pi1
  return fpsem
 where
  -- map a main call into an abstract equation
  main2int (f,aterms) = Eq f aterms (adomBottom adom)

-- Performs an iterated fixpoint computation.
computeFixpoint :: Bool -> Int -> (a->String) -> (a->a->Bool) -> (a->a) -> a
                -> IO a
computeFixpoint withprint n prt eq f v = do
  if withprint then putStrLn (show n ++ ": " ++ prt v)
               else putStr (' ':show n) >> hFlush stdout
  let fv = f v
  if  eq v fv
   then do putStrLn $ "\nFixpoint reached after " ++ show n ++ " iterations"
           return v
   else computeFixpoint withprint (n+1) prt eq f fv


-- show a semantic interpretation w.r.t. an abstract domain
-- (containing a show function for semantic elements)
showSemInt :: ADom a -> SemInt a -> String
showSemInt adom eqs =
  let semIntLine = "{" ++ intercalate ", " (map showEq eqs) ++ "}"
   in show (length eqs) ++ " semantic equations:\n" ++
      if length semIntLine < 80
      then semIntLine
      else "{" ++ intercalate ",\n " (map showEq eqs) ++ "}"
 where
  showe = adomShow adom

  showEq (Eq f args r) =
    f ++ (if null args
          then []
          else '(' : intercalate "," (map showe args) ++ ")")
      ++ " = " ++ showe r

-- get standard main call (i.e., main(var1,...,varn)) from the rules:
getMainCall :: [Rule] -> (String,[Term])
getMainCall rules = ("main", genArgs (arityOf "main" rules))
 where
  genArgs n = map Var [1..n]

-- get standard main calls (i.e., for each function f/n and each
-- i \in [1..n] the call f(var_1,...,var_{i-1},bottom,var_{i+1},...,var_n))
-- from the rules:
genMainCalls :: ADom a -> [Rule] -> [(String,[a])]
genMainCalls (ADom abot avar _ _ _ _ _) rules =
  concatMap genStrictCalls (allFunctions rules)
 where
  genStrictCalls (f,n) = map genStrictCall [1..n]
    where genStrictCall i = (f, replace abot (i-1) (map avar [1..n]))

-- Prints a program and a list of abstract main calls.
-- The abstract domain is provided as a first argument.
printProgram :: ADom a -> [Rule] -> [(String,[a])] -> IO ()
printProgram adom rules maincalls = do
  putStrLn $ "\nRewrite rules:\n\n" ++ showTRS rules
  putStrLn $ "\nMain calls: " ++
             intercalate ", " (map showATermCall maincalls)
  putStrLn ""
 where
  showATerm = adomShow adom

  showATermCall (f,args) =
    f ++ (if null args
          then []
          else '(' : intercalate "," (map showATerm args) ++ ")")

------------------------------------------------------------------------------
-- Fixpoint computation based on working lists.

-- The current semantic equations are represented as a mapping
-- from function names into a list of equations (arguments,results)
-- together with a list of function names on which the equation depends
type WorkSemInt a = Table.TableRBT String [([a],a,[String])]

-- Look up the semantic equations of a function in the current semantics:
fEqsOfWorkSem :: String -> WorkSemInt a -> [([a],a,[String])]
fEqsOfWorkSem f ws = maybe [] id (Table.lookup f ws)

-- Process a working list of (abstract) calls to compute an interpretation:
-- (processWorkList adom lessSpecificEq	showabs trs wl finals)
-- adom      : structure of the abstract domain
-- lessSpecificEq: less-specific ordering on equations (less-specific equations
--                 are usually removed from the abstract semantics)
-- withprint : should intermediate results be printed?
-- trs       : term rewriting system
-- wl        : working list (i.e., list of abstract calls that must be
--             analyzed and inserted in final interpretation)
-- finals    : (currently) final semantic equations together with
--             a list of function names on which they depend
-- result: final interpretation

processWorkList :: Eq a => ADom a -> (SemEq a->SemEq a->Bool) -> Bool -> [Rule]
                        -> [(String,[a])] -> WorkSemInt a -> IO (SemInt a)

processWorkList _ _ _ _ [] finals =
  -- transform the final semantic into the usual format:
  return (concatMap (\ (f,feqs) -> map (\ (args,res,_) -> Eq f args res) feqs)
                    (Table.toList finals))

processWorkList adom@(ADom abottom avar acons matchterms _ _ applyprim)
       lessSpecificEq withprint trs wl@((fc,eargs) : working) finals = do
  if withprint
   then putStr (" W" ++ show (length wl) ++
                "/F" ++ show (length (Table.toList finals)))
   else return ()
  let fcRules = let rules = funcRules fc trs
                 in if null rules
                    then error ("Rules of operation '"++fc++"' not found!")
                    else rules

      (newwss,newfeqss) = maybe (unzip (map applyRule fcRules))
                                (\ares -> ([],[[(eargs,ares,[])]]))
                                (applyprim fc eargs)

      (newws,newfeqs)   = (concat newwss, concat newfeqss)
      betterCalls       = filter isBetterCall newws
      betterEquations   = filter hasBetterResult
                                 (if null newfeqs
                                  then [(eargs,abottom,[])] -- no matching rule
                                  else newfeqs)
      bestEquations     = filter (\e-> not (any (\ei->ei/=e && leqEqDep e ei)
                                                betterEquations))
                                 betterEquations
      activatedEqs =
        if null bestEquations
        then []
        else concatMap (\ (f,feqs) -> concatMap (\ (args,_,deps) ->
                            if fc `elem` deps then [(f,args)] else []) feqs)
                       (Table.toList finals)
  --putStrLn ("WORKING:" ++
  --          showSemInt adom (map (\ (f,args)->Eq f args abottom) wl))
  --putStrLn ("FINAL:" ++ showSemInt adom
  --     (concatMap (\ (f,feqs) -> map (\ (args,res,_) -> Eq f args res) feqs)
  --                (Table.toList finals)))
  --putStrLn ("Function: " ++ fc)
  --putStrLn ("BETTER: " ++ show betterEquations)
  --putStrLn ("BEST  : " ++ show bestEquations)
  --putStrLn ("BETTER: " ++ show betterFuncs)
  --putStrLn ("ACTIVE: " ++ show activatedEqs)
  processWorkList adom lessSpecificEq withprint trs
                 (foldr insertIfBetterCall working
                        (betterCalls ++ activatedEqs))
                 (foldr insertBetterIntoRemaining finals bestEquations)
 where
  -- insert better (dependency) equations  and delete all less specific ones:
  insertBetterIntoRemaining bettereq wsem =
    let oldfceqs = fEqsOfWorkSem fc wsem
     in Table.update fc
          (bettereq : filter (\oldeq -> not (leqEq oldeq bettereq)) oldfceqs)
          wsem

  -- insert given abstract call if there does not already exist one
  -- which is more specific than this one; if the call is inserted,
  -- all less specific calls are removed
  --insertIfBetterCall :: (String,[a]) -> [(String,[a])] -> [(String,[a])]
  insertIfBetterCall eq wlist =
    if any (leqCall eq) wlist
      then wlist
      else eq : filter (\e -> not (leqCall e eq)) wlist
   where
    leqCall (f,args) (f',args') =
      lessSpecificEq (Eq f args abottom) (Eq f' args' abottom)

  -- is a given abstract call more specific than all equations
  -- in the current final interpretation?
  --isBetterCall :: (String,[a]) -> Bool
  isBetterCall (f,args) =
    not (any (\ (args',_,_) ->
                  lessSpecificEq (Eq f args abottom) (Eq f args' abottom))
             (fEqsOfWorkSem f finals))

  -- is a given equation for function fc a better approximation than
  -- anything in the current final equations,
  -- i.e., if there does not already exist one final equation which has
  -- an identical left-hand side but a more specific result than this one
  hasBetterResult eq = not (any (leqEq eq) (fEqsOfWorkSem fc finals))

  -- compare given equation: left-hand sides and right-hand sides
  -- in leq relation on terms?
  leqEq (args,r,_) (args',r',_) =
    lessSpecificEq (Eq fc args r) (Eq fc args' r')

  -- compare given equation and their dependencies:
  -- left- and right-hand sides in leq relation on terms and dependencies
  -- subsumed?
  leqEqDep (args,r,ds) (args',r',ds') =
    lessSpecificEq (Eq fc args r) (Eq fc args' r') && all (`elem` ds') ds

  applyRule (largs,rhs) =
    maybe ([],[])
          (\s -> (concatMap (newCall s) (fSubterms rhs),
                  map (\ri -> (eargs,ri,depFuncs))
                      (evalInt s finals rhs)))
          (matchterms largs eargs)
   where
    depFuncs = funcsInTerm rhs

  newCall s (f,args) = map (\iargs->(f,iargs))
                           (extendListMap (evalInt s finals) args)

  -- abstract evaluation of a term w.r.t. a substitution and interpretation
  --evalInt :: Sub a -> WorkSemInt a -> Term -> [a]
  evalInt sub _ (Var v) = [maybe (avar v) id (lookup v sub)]
  evalInt sub eqs (Func Cons c args) =
    map (acons c) (extendListMap (evalInt sub eqs) args)
  evalInt sub eqs (Func Def f args) =
    let evalargs = extendListMap (evalInt sub eqs) args
        results = concatMap (\ (argsi,r,_) ->
                                  if any (\evargs->evargs==argsi) evalargs
                                  then [r]
                                  else [])
                            (fEqsOfWorkSem  f eqs)
     in if null results then [abottom] else results

-- run a fixpoint computation with working lists starting form a given
-- list of abstract function calls:
runFixpointWL :: Eq a => ADom a -> (SemEq a -> SemEq a -> Bool) -> [Rule]
              -> [(String,[a])] -> Bool
              -> IO (SemInt a)
runFixpointWL adom lessSpecificEq rules maincalls withprint = do
  garbageCollect
  pi1 <- getProcessInfos
  finals <- processWorkList adom lessSpecificEq withprint rules
                            maincalls (Table.empty (<=))
  pi2 <- getProcessInfos
  printTiming pi1 pi2
  return finals

-- show timing w.r.t. some process infos at the start and stop point
-- of a computation:
printTiming :: [(ProcessInfo,Int)] -> [(ProcessInfo,Int)] -> IO ()
printTiming startPInfos stopPInfos = do
  putStrLn $ "Run time:            "
             ++ (showInfoDiff startPInfos stopPInfos RunTime) ++ " msec."
  putStrLn $ "Elapsed time:        "
             ++ (showInfoDiff startPInfos stopPInfos ElapsedTime) ++ " msec."
  putStrLn $ "Garbage collections: "
             ++ (showInfoDiff startPInfos stopPInfos GarbageCollections)
 where
  showInfoDiff infos1 infos2 item =
    maybe "n/a"
          (\i1 -> show (maybe 0 id (lookup item infos2) - i1))
          (lookup item infos1)


------------------------------------------------------------------------------
--- Main calls to the (abstract) interpreters:
------------------------------------------------------------------------------
-- main function to call the analyser as a saved state:
main :: IO ()
main = do
  args <- getArgs
  let (depth,max,wlist,callpat,prog) = checkArgs (1,False,True,False,"") args
  if callpat
    then callPatternAnalysis depth max wlist (dropExtension prog)
    else transformNondet depth max wlist (dropExtension prog)

mainCallError :: [String] -> _
mainCallError args = error $ unlines
  [ "Illegal arguments: " ++ unwords args
  , ""
  , "Usage: curry-ndopt [-d <k>] [-max] [-fix|-wlist] [-call] <module_name>"
  , ""
  , "Options:"
  , "<k>   : term depth (default: 1)"
  , "-max  : compute only maximal abstract elements in fixpoints"
  , "-fix  : use simple fixpoint iteration"
  , "-wlist: use working list fixpoint computation (default)"
  , "-call : compute only call patterns (and do not transform program)"
  ]

checkArgs :: (Int,Bool,Bool,Bool,String) -> [String]
          -> (Int,Bool,Bool,Bool,String)
checkArgs (depth,max,wlist,callpat,prog) args = case args of
  [] -> mainCallError []
  ("-d":ks:margs) -> let k = case readNat ks of
                               [(n,"")] -> n
                               _        -> mainCallError args
                      in checkArgs (k,max,wlist,callpat,prog) margs
  ("-max":margs) -> checkArgs (depth,True,wlist,callpat,prog) margs
  ("-wlist":margs) -> checkArgs (depth,max,True,callpat,prog) margs
  ("-fix":margs) -> checkArgs (depth,max,False,callpat,prog) margs
  ("-call" :margs) -> checkArgs (depth,max,wlist,True,prog) margs
  [mainmod] -> (depth,max,wlist,callpat,mainmod)
  _ -> mainCallError []

-- Call pattern analysis with depth-k domain.
callPatternAnalysis :: Int -> Bool -> Bool -> String -> IO ()
callPatternAnalysis termdepth keepmax withwlist modname = do
    rules <- readRules modname
    let absdom = depthDom termdepth
        maincalls = [abstractCall absdom (getMainCall rules)]
        lessSpecificEq = lessSpecificEqCallPattern lessDSpecific
    printProgram absdom rules maincalls
    let seminsertion = if keepmax then updateSemEq lessSpecificEq
                                  else insertSemEq
    fpsem <- if not withwlist
             then runFixpoint absdom seminsertion rules maincalls False eqSemInt
             else runFixpointWL absdom lessSpecificEq rules maincalls False
    putStrLn (showSemInt absdom (sort fpsem))

-- Non-determinism transformation by strictness/overlapping analysis
transformNondet :: Int -> Bool -> Bool -> String -> IO ()
transformNondet termdepth keepmax withwlist modname = do
    (FC.Prog _ imports typedecls _ _, rules) <- readFlatCurryRules modname
    let absdom = depthDom termdepth
        maincalls = genMainCalls absdom rules
        lessSpecificEq = lessSpecificEqResult lessDSpecific
    printProgram absdom rules maincalls
    let seminsertion = if keepmax then updateSemEq lessSpecificEq
                                  else insertSemEq
    fpsem <- if not withwlist
             then runFixpoint absdom seminsertion rules maincalls False eqSemInt
             else runFixpointWL absdom lessSpecificEq rules maincalls False
    putStrLn (showSemInt absdom (sort fpsem))
    let strinfos = sortFuncInfos (extractStrictness absdom fpsem)
    putStrLn ('\n' : showStrictness strinfos)
    createAnalysisDir modname
    writeFile (strictInfoFileName modname) (show strinfos)
    ndinfos <- getNondetInfos modname >>= return . sortFuncInfos
    putStrLn ("Computed non-determinism information:\n"++show ndinfos++"\n")
    writeFile (ndInfoFileName modname) (show ndinfos)
    let (transrules,numopts) = transformRules ndinfos strinfos rules
        newprog = letDropping $ unApply transrules
        newprogtxt = showTRS newprog
    putStrLn $ "Transformed program (stored in '"++modname++"_O.curry'):"
    putStrLn newprogtxt
    writeFile (modname++"_O.curry")
              (unlines (map ("import "++) (filter (/="Prelude") imports)) ++
               concatMap showDataDeclAsCurry typedecls ++ newprogtxt)
    putStrLn $ "Number of performed optimizations: " ++ show numopts
 where
  showDataDeclAsCurry fd =
    showCurryDataDecl (FC.showQNameInModule (dataModule fd)) fd

-----------------------------------------------------------------------
-- Remove all occurrences of generated apply operation in a program
unApply :: [Rule] -> [Rule]
unApply = map unApplyInRule . filter (not . applyRule)
 where
  -- does the rule defines the generated apply operation?
  applyRule (Rule f _ _) = f == "apply"

  unApplyInRule :: Rule -> Rule
  unApplyInRule (Rule f args exp) = Rule f args (unApplyInExp exp)

  unApplyInExp :: Term -> Term
  unApplyInExp (Var i) = Var i
  unApplyInExp (Func Cons c args) = Func Cons c (map unApplyInExp args)
  unApplyInExp (Func Def f args) =
    if f=="apply" && length args == 2
    then Func Def "$" args
    else Func Def f (map unApplyInExp args)
  
-----------------------------------------------------------------------
-- Optimize program w.r.t. non-determinism and strictness information
-- Returns new rules and number of optimization transformations performed
transformRules :: [(String,Bool)] -> [(String,[Int])] -> [Rule] -> ([Rule],Int)
transformRules ndinfos strinfos rules =
  let (newrules,numopts) = unzip $
        map (\ (Rule f args exp) ->
              let (newrhs,_,numopt) = transformExp ndinfos strinfos exp
               in (Rule f args newrhs, numopt))
            rules
   in (newrules, foldr (+) 0 numopts)

-- Transform expression w.r.t. non-determinism and strict information.
-- Returns:
-- * transformed expression
-- * is the expression non-deterministic?
-- * number of optimization transformations applied
transformExp :: [(String,Bool)] -> [(String,[Int])] -> Term -> (Term,Bool,Int)
transformExp _ _ (Var i) = (Var i, False, 0)
transformExp ndinfos strinfos (Func Cons c args) =
  let (targs,ndargs,numopts) = unzip3 (map (transformExp ndinfos strinfos) args)
   in (Func Cons c targs, or ndargs, foldr (+) 0 numopts)
transformExp ndinfos strinfos (Func Def f args) =
  let (targs,ndargs,numopts) = unzip3 (map (transformExp ndinfos strinfos) args)
      isndexp = (maybe False id (lookup f ndinfos)) || or ndargs
      fsargs  = maybe [] id (lookup f strinfos)
      argopts = foldr (+) 0 numopts
      strictapplies = foldr (\si sargs -> replace (ndargs!!(si-1)) (si-1) sargs)
                            (take (length args) (repeat False))
                            fsargs
   in if null fsargs || not (or ndargs) || not (or strictapplies)
      then (Func Def f targs, isndexp, argopts)
      else (strictApply (Func Def f []) strictapplies targs, isndexp, argopts+1)
 where
  strictApply exp [] [] = exp
  strictApply exp (str:strs) (x:xs) =
    strictApply (Func Def (if str then "$!" else "$") [exp,x]) strs xs

-- extract list of strict arguments for each function from least fixpoint
extractStrictness :: Eq a => ADom a -> SemInt a -> [(String,[Int])]
extractStrictness adom aint = map checkStrictArgs allfuncs
 where
  abot = adomBottom adom

  allfuncs = nub (map (\ (Eq f args _) -> (f,length args)) aint)

  checkStrictArgs (f,n) = (f,concatMap checkStrictArg [1..n])
   where
     checkStrictArg i =
       let argibotEqs = filter (\ (Eq g args _) -> f==g && args!!(i-1) == abot)
                               aint
        in if not (null argibotEqs) && all (\ (Eq _ _ r) -> r==abot) argibotEqs
           then [i]
           else []

-- Sort list of operation information by function names:
sortFuncInfos :: [(String,a)] -> [(String,a)]
sortFuncInfos = sortBy (\i1 i2 -> fst i1 <= fst i2)

-- Show strictness information of all functions a little bit formatted:
showStrictness :: [(String,[Int])] -> String
showStrictness info =
  "Computed strictness information:\n"++
  unlines (map (\ (f,sargs) -> if null sargs
                                 then f ++ " not strict"
                                 else f ++ " strict at " ++
                                      intercalate "," (map show sargs))
               info)

dataModule :: FC.TypeDecl -> String
dataModule (FC.Type tname _ _ _) = fst tname
dataModule (FC.TypeSyn tname _ _ _) = fst tname
dataModule (FC.TypeNew tname _ _ _) = fst tname

------------------------------------------------------------------------------
-- operations for benchmarking

-- define where to look for the benchmark programs:
prog2DirFile :: String -> String
prog2DirFile = ("benchmarks_callpattern/" ++)

-- benchmark different interpretation methods:
bench :: Int -> String -> IO ()
bench k file = do
  putStrLn (take 70 (repeat '='))
  rules <- readRules (prog2DirFile file)
  let absdom = depthDom k
      maincalls = [abstractCall absdom (getMainCall rules)]
  printProgram absdom rules maincalls
  putStrLn $ "\nTotal number of rules: " ++ show (length rules)
  putStrLn "\nRunning simple call analysis..."
  semsimple <- runFixpoint absdom insertSemEq
                           rules maincalls False eqSemInt
  putStrLn (showSemInt absdom semsimple)
  putStrLn "\nRunning call analysis with ordered insertion..."
  semord <- runFixpoint absdom (updateSemEq
                                  (lessSpecificEqCallPattern lessDSpecific))
                        rules maincalls False eqSemInt
  putStrLn (showSemInt absdom semord)
  putStrLn "\nRunning call analysis with working lists..."
  semwl <- runFixpointWL absdom (lessSpecificEqCallPattern lessDSpecific)                                 rules maincalls False >>=
           return . sort
  if semord==semwl
    then return ()
    else putStrLn (showSemInt absdom semwl)

-- run the benchmarks of the examples directory:
runBench :: IO ()
runBench = do
  bench 1 "addadd"
  bench 2 "addlast"
  bench 1 "bertf0"
  bench 1 "bertconc"
  bench 1 "doublecoin"
  bench 1 "family"
  bench 2 "halfdouble"
  bench 1 "head"
  bench 1 "lastapp"
  bench 8 "readfile"
  bench 2 "mapadddouble"
  bench 1 "risers"
  bench 1 "tails"

------------------------------------------------------------------------------
types:
ADom CTerm DTerm SemEq SemInt Sub WorkSemInt
unsafe:
safe