sourcecode:
|
module Analysis.RightLinearity
(rlinAnalysis,hasRightLinearRules,linearExpr,showRightLinear) where
import Analysis.Types
import FlatCurry.Types
import Data.Maybe
import Data.List
------------------------------------------------------------------------------
--- The right-linearity analysis is a global function dependency analysis.
--- It assigns to a function a flag which is True if this function
--- is right-linear, i.e., defined by right-linear rules and depend only on
--- functions defined by right-linear rules.
rlinAnalysis :: Analysis Bool
rlinAnalysis = dependencyFuncAnalysis "RightLinear" True rlFunc
--- An operation is right-linear if it is defined by right-linear rules
--- and depends only on right-linear operations.
rlFunc :: FuncDecl -> [(QName,Bool)] -> Bool
rlFunc func calledFuncs =
hasRightLinearRules func && all snd calledFuncs
-- Show right-linearity information as a string.
showRightLinear :: AOutFormat -> Bool -> String
showRightLinear _ True = "right-linear"
showRightLinear AText False = "not defined by right-linear rules"
showRightLinear ANote False = ""
------------------------------------------------------------------------------
-- The right-linearity analysis can also be applied to individual functions.
-- It returns True for a function if it is defined by right-linear rules.
hasRightLinearRules :: FuncDecl -> Bool
hasRightLinearRules (Func _ _ _ _ rule) = isRightLinearRule rule
isRightLinearRule :: Rule -> Bool
isRightLinearRule (Rule _ e) = linearExpr e
isRightLinearRule (External _) = True
--------------------------------------------------------------------------
-- Check an expression for linearity:
linearExpr :: Expr -> Bool
linearExpr e = maybe False (const True) (linearVariables e)
-- Return list of variables in an expression, if it is linear,
-- otherwise: Nothing
linearVariables :: Expr -> Maybe [Int]
linearVariables (Var i) = Just [i]
linearVariables (Lit _) = Just []
linearVariables (Comb _ f es)
| f==("Prelude","?") && length es == 2 -- treat "?" as Or:
= linearVariables (Or (head es) (head (tail es)))
| otherwise
= mapM linearVariables es >>= \esvars ->
let vars = concat esvars
in if nub vars == vars
then Just vars
else Nothing
linearVariables (Free vs e) =
linearVariables e >>= \evars -> Just (evars \\ vs)
linearVariables (Let bs e) =
mapM linearVariables (map snd bs) >>= \bsvars ->
linearVariables e >>= \evars ->
let vars = concat (evars : bsvars)
in if nub vars == vars
then Just (vars \\ (map fst bs))
else Nothing
linearVariables (Or e1 e2) =
linearVariables e1 >>= \e1vars ->
linearVariables e2 >>= \e2vars ->
Just (union e1vars e2vars)
linearVariables (Case _ e bs) =
linearVariables e >>= \evars ->
mapM linearVariables (map (\ (Branch _ be) -> be) bs) >>= \bsvars ->
let vars = foldr union [] (map (\ (branch,bsv) -> bsv \\ patternVars branch)
(zip bs bsvars)) ++ evars
in if nub vars == vars
then Just vars
else Nothing
where
patternVars (Branch (Pattern _ vs) _) = vs
patternVars (Branch (LPattern _) _) = []
linearVariables (Typed e _) = linearVariables e
|