CurryInfo: contract-prover-4.0.0 / ContractProver

classes:

              
documentation:
---------------------------------------------------------------------------
--- A tool to prove pre- or postconditions via an SMT solver (Z3)
--- and to remove the statically proven conditions from a program.
---
--- @author  Michael Hanus
--- @version October 2024
---------------------------------------------------------------------------
-- A few things to be done to improve contract checking:
--
-- * eta-expand pre- and postconditions (before contract checking)
--   in order to generate correct SMT formulas
---------------------------------------------------------------------------
name:
ContractProver
operations:
addPostConditionCheck addPostConditionTo addPreConditionCheck addPreConditions addToAssertion addVarTypes applyFunc axiomatizedOps banner binding2SMT callSMT checkImplication checkImplicationWithSMT emptyTransState extractPostConditionProofObligation fileInPath fromNoCheckQName genSMTTypes getAssertion getContractCheckerModulePath getFreshVar getFreshVarIndex getIncludePath getVarTypes ilog main makeTransState nondetTrans nondetTransL normalizeArgs optPreConditionInRule postCondExpOf preCondExpOf pred2smt proveContracts proveContractsInProg provePostCondition provePreCondition renamePatternVars setAssertion setFreshVarIndex showDictOf showDictTypeOf showQNameNoDots showWithLineNums tconsOfTypeExpr toNoCheckQName typedVar2SMT unzipBranches verifyPostConditions verifyPreConditions writeTransformedFCY writeTransformedTAFCY
sourcecode:
module ContractProver where

import Control.Monad      ( unless, when )
import Data.IORef
import Data.List          ( elemIndex, find, init, isPrefixOf, last, maximum
                          , minimum, nub, partition, splitOn, union )
import Data.Maybe         ( catMaybes, isJust, isNothing )
import System.Environment ( getArgs, getEnv )

-- Imports from dependencies:
import Contract.Names
import Contract.Usage                    ( checkContractUsage )
import Control.Monad.Trans.Class         ( lift )
import Control.Monad.Trans.State         ( StateT, get, put, evalStateT )
import System.FilePath                   ( (</>) )
import FlatCurry.Files
import FlatCurry.Types
import qualified FlatCurry.Goodies as FCG
import FlatCurry.Annotated.Goodies
import FlatCurry.Annotated.Types
import FlatCurry.TypeAnnotated.Files     ( readTypeAnnotatedFlatCurry
                                         , typeAnnotatedFlatCurryFileName 
                                         , writeTypeAnnotatedFlatCurryFile )
import FlatCurry.TypeAnnotated.TypeSubst ( substRule )
import FlatCurry.ShowIntMod              ( showCurryModule )
import System.CurryPath                  ( runModuleActionQuiet )
import System.Directory                  ( doesFileExist )
import System.IOExts                     ( evalCmd )
import System.Process                    ( exitWith, system )

-- Imports from package modules:
import ESMT
import Curry2SMT
import FlatCurry.Typed.Build
import FlatCurry.Typed.Read
import FlatCurry.Typed.Goodies
import FlatCurry.Typed.Names
import FlatCurry.Typed.Simplify ( simpProg, simpFuncDecl, simpExpr )
import FlatCurry.Typed.Types
import PackageConfig            ( getPackagePath )
import ToolOptions
import VerifierState

------------------------------------------------------------------------

banner :: String
banner = unlines [bannerLine, bannerText, bannerLine]
 where
  bannerText = "Contract Checking/Verification Tool (Version of 26/10/24)"
  bannerLine = take (length bannerText) (repeat '=')

-- Path name of the module with auxiliary operations for contract checking.
getContractCheckerModulePath :: IO String
getContractCheckerModulePath = getIncludePath "ContractChecker.curry"

---------------------------------------------------------------------------

main :: IO ()
main = do
  args <- getArgs
  (opts,progs) <- processOptions banner args
  let optname = optName opts
  if not (null optname)
    then putStrLn $ "Precondition for '" ++ optname ++ "':\n" ++
                    encodeContractName (optname ++ "'pre") ++ "\n" ++
                    "Postcondition for '" ++ optname ++ "':\n" ++
                    encodeContractName (optname ++ "'post")
    else do
      when (optVerb opts > 0) $ putStrLn banner
      z3exists <- fileInPath "z3"
      unless (z3exists || not (optVerify opts)) $ putStrLn $ unlines $
        [ "WARNING: CONTRACT VERIFICATION SKIPPED:"
        , "The SMT solver Z3 is required for the verifier"
        , "but the program 'z3' is not found in the PATH!"]
      let opts' = if z3exists then opts else opts { optVerify = False }
      mapM_ (proveContracts opts') progs

---------------------------------------------------------------------------

-- Optimize a module by proving its contracts and remove verified
-- postconditions or add unverified preconditions.
proveContracts :: Options -> String -> IO ()
proveContracts opts mainmodname = do
  prog <- readTypedFlatCurryWithSpec opts mainmodname
  let errs = checkContractUsage (progName prog)
               (map (\fd -> (snd (funcName fd), funcType fd)) (progFuncs prog))
  if null errs
    then proveContractsInProg opts prog
    else do putStr $ unlines (map showOpError errs)
            exitWith 1
 where
  showOpError (qf,err) =
    snd qf ++ " (module " ++ fst qf ++ "): " ++ err

proveContractsInProg :: Options -> TAProg ->  IO ()
proveContractsInProg opts oprog = do
  let sprog = simpProg oprog
  printWhenAll opts $ unlines $
    ["ORIGINAL PROGRAM:",   line, showCurryModule (unAnnProg oprog), line,
     "SIMPLIFIED PROGRAM:", line, showCurryModule (unAnnProg sprog), line]
  vstref <- newIORef (initVState (makeVerifyInfo opts (progFuncs sprog)))
  modifyIORef vstref (addProgToState sprog)
  prog1 <- verifyPostConditions opts oprog vstref
  prog2 <- verifyPreConditions  opts prog1 vstref
  prog3 <- addPreConditions     opts prog2 vstref
  let unewprog = unAnnProg prog3
      mname    = progName prog3
  printWhenAll opts $ unlines $
    ["TRANSFORMED PROGRAM WITH CONTRACT CHECKING:", line,
     showCurryModule unewprog, line]
  vst2 <- readIORef vstref
  when (areContractsAdded vst2) $ do
    when (optFCY opts) $
      writeTransformedFCY opts (flatCurryFileName mname) unewprog
    when (optTAFCY opts) $
      writeTransformedTAFCY opts (typeAnnotatedFlatCurryFileName mname) prog3
  printWhenStatus opts (showStats vst2)
 where
  line = take 78 (repeat '-')

-- Writes the transformed FlatCurry program together with the contents
-- of the auxiliary `ContractChecker` module.
writeTransformedFCY :: Options -> String -> Prog -> IO ()
writeTransformedFCY opts progfile prog = do
  ccpath <- getContractCheckerModulePath
  ccprog <- runModuleActionQuiet readFlatCurry ccpath
  let rnmccprog = FCG.rnmProg (FCG.progName prog) ccprog
      ccimps    = FCG.progImports rnmccprog
      ccfuncs   = FCG.progFuncs rnmccprog
  writeFCY progfile
           (FCG.updProgFuncs (++ ccfuncs)
                             (FCG.updProgImports (`union` ccimps) prog))
  printWhenStatus opts $ "Transformed program written to: " ++ progfile

-- Writes the transformed type-annotated FlatCurry program
-- together with the contents of the auxiliary `ContractChecker` module.
writeTransformedTAFCY :: Options -> String -> TAProg -> IO ()
writeTransformedTAFCY opts progfile prog = do
  ccpath <- getContractCheckerModulePath
  ccprog <- runModuleActionQuiet readTypeAnnotatedFlatCurry ccpath
  let rnmccprog = rnmProg (progName prog) ccprog
      ccimps    = progImports rnmccprog
      ccfuncs   = progFuncs rnmccprog
  writeTypeAnnotatedFlatCurryFile progfile
     (updProgFuncs (++ ccfuncs)
                   (updProgImports (`union` ccimps) prog))
  printWhenStatus opts $ "Transformed program written to: " ++ progfile

---------------------------------------------------------------------------
-- The state of the transformation process contains
-- * the current assertion
-- * a fresh variable index
-- * a list of all introduced variables and their types:
data TransState = TransState
  { cAssertion :: Term
  , freshVar   :: Int
  , varTypes   :: [(Int,TypeExpr)]
  }

makeTransState :: Int -> [(Int,TypeExpr)] -> TransState
makeTransState = TransState tTrue

emptyTransState :: TransState
emptyTransState = makeTransState 0 []

-- The type of the state monad contains the transformation state.
--type TransStateM a = State TransState a
type TransStateM a = StateT TransState IO a

-- Gets the current fresh variable index of the state.
getFreshVarIndex :: TransStateM Int
getFreshVarIndex = get >>= return . freshVar

-- Sets the fresh variable index in the state.
setFreshVarIndex :: Int -> TransStateM ()
setFreshVarIndex fvi = do
  st <- get
  put $ st { freshVar = fvi }

-- Gets a fresh variable index and increment the index in the state.
getFreshVar :: TransStateM Int
getFreshVar = do
  st <- get
  put $ st { freshVar = freshVar st + 1 }
  return $ freshVar st

-- Gets the variables and their types stored in the state.
getVarTypes :: TransStateM [(Int,TypeExpr)]
getVarTypes = get >>= return . varTypes

-- Adds variables and their types to the state.
addVarTypes :: [(Int,TypeExpr)] -> TransStateM ()
addVarTypes vts = do
  st <- get
  put $ st { varTypes = vts ++ varTypes st }

-- Gets the current assertion stored in the state.
getAssertion :: TransStateM Term
getAssertion = get >>= return . cAssertion

-- Sets the current assertion in the state.
setAssertion :: Term -> TransStateM ()
setAssertion formula = do
  st <- get
  put $ st { cAssertion = formula }

-- Add a formula to the current assertion in the state by conjunction.
addToAssertion :: Term -> TransStateM ()
addToAssertion formula = do
  st <- get
  put $ st { cAssertion = tConj [cAssertion st, formula] }

---------------------------------------------------------------------------
-- Adds a precondition check to a original call of the form
-- `AComb ty ct (qf,tys) args`.
addPreConditionCheck :: TypeExpr -> CombType -> QName -> TypeExpr -> [TAExpr]
                     -> TAExpr
addPreConditionCheck ty ct qf@(mn,fn) tys args =
  AComb ty FuncCall
    ((mn, maybe "checkPreCondNoShow" (const "checkPreCond") showdicttt),
     showDictTypeOf tt ~> ty ~> boolType ~> stringType ~> tt ~> ty)
    -- add Show dictionary argument of type tt, if possible:
    (maybe [] (:[]) showdicttt ++
    [ AComb ty ct (toNoCheckQName qf,tys) args
    , AComb boolType ct (toPreCondQName qf, pctype) args
    , string2TAFCY fn
    , tupleExpr args
    ])
 where
  argtypes   = map annExpr args
  tt         = tupleType argtypes
  pctype     = foldr FuncType boolType argtypes
  showdicttt = showDictOf tt

--- Transform a qualified name into a name of the corresponding function
--- without precondition checking by adding the suffix "'NOCHECK".
toNoCheckQName :: (String,String) -> (String,String)
toNoCheckQName (mn,fn) = (mn, fn ++ "'NOCHECK")

--- Drops a possible "'NOCHECK" suffix from a qualified name.
fromNoCheckQName :: (String,String) -> (String,String)
fromNoCheckQName (mn,fn) =
  (mn, let rf = reverse fn
       in reverse (drop (if take 8 rf == "KCEHCON'" then 8 else 0) rf))

-- Adds a postcondition check to a program rule of a given operation.
addPostConditionCheck :: QName -> TARule -> TAExpr
addPostConditionCheck _ (AExternal _ _) =
  error $ "Trying to add postcondition to external function!"
addPostConditionCheck qf@(mn,fn) (ARule _ lhs rhs) =
  AComb ty FuncCall
    ((mn, if showdictsexists then "checkPostCond" else "checkPostCondNoShow"),
     showDictTypeOf ty ~> showDictTypeOf tt
       ~> ty ~> (ty ~> boolType) ~> stringType ~> tt ~> ty)
    (-- add Show dictionary arguments of types ty and tt, if both exist:
     (if showdictsexists then catMaybes showdicts else []) ++
     [ rhs
     , AComb boolType (FuncPartCall 1) (toPostCondQName qf, ty) args
     , string2TAFCY fn
     , tupleExpr args
     ])
 where
  args = map (\ (i,t) -> AVar t i) lhs
  tt   = tupleType (map annExpr args)
  ty   = annExpr (last args)
  showdicts       = [showDictOf ty, showDictOf tt]
  showdictsexists = all isJust showdicts
 
------------------------------------------------------------------------------
-- Generate Show dictionary argument for a given type, if possible
-- (e.g., if the type is not polymorphic or functional).
showDictOf :: TypeExpr -> Maybe TAExpr
showDictOf te = case te of
  TCons qtc tes ->  do
    sd  <- typeCons2ShowDict qtc
    sds <- mapM showDictOf tes
    return $ AComb (showDictTypeOf te) (FuncPartCall 1)
                   (sd, foldr (~>) (showDictTypeOf te) (map showDictTypeOf tes))
                   sds
  _             -> Nothing
 where
  typeCons2ShowDict (mn,tc)
    | mn == "Prelude"
    = maybe Nothing (Just . pre) (preludeType2ShowDict tc)
    -- here we assume that a Show instance exists for the user-defined type
    -- safer solution: check the program for the existence of this instance
    | otherwise
    = Just (mn, "_inst#Prelude.Show#" ++ mn ++ "." ++ tc ++ "#")

  preludeType2ShowDict tc
    | tc `elem` ["Int", "Float", "Char", "Bool", "Maybe", "Either",
                 "IOError", "Ordering"]
    = Just $ "_inst#Prelude.Show#Prelude." ++ tc ++ "#"
    | tc `elem` ["[]","()"] || "(," `isPrefixOf` tc
    = Just $ "_inst#Prelude.Show#" ++ tc ++ "#"
    | otherwise
    = Nothing

-- Generate the type of the Show dictionary argument for a given type:
showDictTypeOf :: TypeExpr -> TypeExpr
showDictTypeOf te =
  FlatCurry.Typed.Build.unitType ~> TCons ("Prelude","_Dict#Show") [te]

------------------------------------------------------------------------------
-- Add (non-trivial) preconditions:
-- If an operation `f` has some precondition `f'pre`,
-- replace the rule `f xs = rhs` by the following rules:
--
--     f xs = checkPreCond (f'NOCHECK xs) (f'pre xs) "f" xs
--     f'NOCHECK xs = rhs
addPreConditions :: Options -> TAProg -> IORef VState -> IO TAProg
addPreConditions _ prog vstref = do
  newfuns  <- mapM addPreCondition (progFuncs prog)
  return (updProgFuncs (const (concat newfuns)) prog)
 where
  addPreCondition fdecl@(AFunc qf ar vis fty rule) = do
    ti <- readVerifyInfoRef vstref
    return $
      if toPreCondQName qf `elem` map funcName (preConds ti)
        then let newrule = checkPreCondRule qf rule
             in [updFuncRule (const newrule) fdecl,
                 AFunc (toNoCheckQName qf) ar vis fty rule]
        else [fdecl]

  checkPreCondRule :: QName -> TARule -> TARule
  checkPreCondRule qn (ARule rty rargs _) =
    ARule rty rargs (addPreConditionCheck rty FuncCall qn rty
                       (map (\ (v,t) -> AVar t v) rargs))
  checkPreCondRule qn (AExternal _ _) = error $
    "addPreConditions: cannot add precondition to external operation '" ++
    snd qn ++ "'!"

---------------------------------------------------------------------------
-- Try to verify preconditions: If an operation `f` occurring in some
-- right-hand side has a precondition, a proof for the validity of
-- this precondition is extracted.
-- If the proof is not successful, a precondition check is added to this call.
verifyPreConditions :: Options -> TAProg -> IORef VState -> IO TAProg
verifyPreConditions opts prog vstref = do
  newfuns  <- mapM (provePreCondition opts vstref) (progFuncs prog)
  return (updProgFuncs (const newfuns) prog)

provePreCondition :: Options -> IORef VState -> TAFuncDecl -> IO TAFuncDecl
provePreCondition opts vstref fdecl = do
  ti <- readVerifyInfoRef vstref
  printWhenIntermediate opts $
    "Operation to be checked: " ++ snd (funcName fdecl)
  newrule <- optPreConditionInRule opts ti (funcName fdecl)
                                           (funcRule fdecl) vstref
  return (updFuncRule (const newrule) fdecl)

optPreConditionInRule :: Options -> VerifyInfo -> QName -> TARule
                      -> IORef VState -> IO TARule
optPreConditionInRule _ _ _ rl@(AExternal _ _) _ = return rl
optPreConditionInRule opts ti qn@(_,fn) (ARule rty rargs rhs) vstref = do
  let targs = zip [1..] (map snd rargs)
      st = makeTransState (maximum (0 : map fst rargs ++ allVars rhs) + 1) rargs
  (flip evalStateT) st $ do
    -- compute precondition of operation:
    precondformula <- preCondExpOf ti qn targs
    setAssertion precondformula
    newrhs <- optPreCondInExp rhs
    return (ARule rty rargs newrhs)
 where
  optPreCondInExp exp = case exp of
    AComb ty ct (qf,tys) args ->
      if qf == ("Prelude","?") && length args == 2
        then optPreCondInExp (AOr ty (args!!0) (args!!1))
        else do
          precond <- getAssertion
          nargs <- mapM optPreCondInExp args
          if toPreCondQName qf `elem` map funcName (preConds ti)
            then do
              lift $ printWhenIntermediate opts $ "Checking call to " ++ snd qf
              (bs,_)   <- normalizeArgs nargs
              bindexps <- mapM (binding2SMT True ti) bs
              precondcall <- preCondExpOf ti qf
                               (zip (map fst bs) (map annExpr args))
              -- TODO: select from 'bindexps' only demanded argument positions
              let title = "SMT script to verify precondition of '" ++ snd qf ++
                          "' in function '" ++ fn ++ "'"
              vartypes <- getVarTypes
              pcproof <- lift $
                checkImplication opts vstref title vartypes
                                 precond (tConj bindexps) precondcall
              let pcvalid = isJust pcproof
              lift $ modifyIORef vstref
                       (addPreCondToStats (snd qf ++ "("++fn++")") pcvalid)
              if pcvalid
                then do
                  lift $ printWhenStatus opts $
                          fn ++ ": PRECONDITION OF '" ++ snd qf ++ "': VERIFIED"
                  return $ AComb ty ct (toNoCheckQName qf, tys) nargs
                else do
                  lift $ printWhenStatus opts $
                           fn ++ ": PRECOND CHECK ADDED TO '" ++ snd qf ++ "'"
                  return $ AComb ty ct (qf,tys) nargs
            else return $ AComb ty ct (qf,tys) nargs
    ACase ty ct e brs -> do
      ne <- optPreCondInExp e
      freshvar <- getFreshVar
      be <- binding2SMT True ti (freshvar,ne)
      addToAssertion be
      addVarTypes [ (freshvar, annExpr ne) ]
      nbrs <- mapM (optPreCondInBranch freshvar) brs
      return $ ACase ty ct ne nbrs
    AOr ty e1 e2 -> do
      ne1 <- optPreCondInExp e1
      ne2 <- optPreCondInExp e2
      return $ AOr ty ne1 ne2
    ALet ty bs e -> do
      nes <- mapM optPreCondInExp (map snd bs)
      ne  <- optPreCondInExp e
      return $ ALet ty (zip (map fst bs) nes) ne
    AFree ty fvs e -> do
      ne <- optPreCondInExp e
      return $ AFree ty fvs ne
    ATyped ty e et -> do
      ne <- optPreCondInExp e
      return $ ATyped ty ne et
    _ -> return exp

  optPreCondInBranch dvar branch = do
    ABranch p e <- renamePatternVars branch
    addToAssertion (tEquVar dvar (pat2SMT p))
    ne <- optPreCondInExp e
    return (ABranch p ne)

-- Rename argument variables of constructor pattern
renamePatternVars :: TABranchExpr -> TransStateM TABranchExpr
renamePatternVars (ABranch p e) =
  if isConsPattern p
    then do
      fv <- getFreshVarIndex
      let args = map fst (patArgs p)
          minarg = minimum (0 : args)
          maxarg = maximum (0 : args)
          rnm i = if i `elem` args then i - minarg + fv else i
          nargs = map (\ (v,t) -> (rnm v,t)) (patArgs p)
      setFreshVarIndex (fv + maxarg - minarg + 1)
      addVarTypes nargs
      return $ ABranch (updPatArgs (map (\ (v,t) -> (rnm v,t))) p)
                       (rnmAllVars rnm e)
    else return $ ABranch p e

---------------------------------------------------------------------------
-- Try to verify postconditions: If an operation `f` has a postcondition,
-- a proof for the validity of the postcondition is extracted.
-- If the proof is not successful, a postcondition check is added to `f`.
verifyPostConditions :: Options -> TAProg -> IORef VState -> IO TAProg
verifyPostConditions opts prog vstref = do
  ti <- readVerifyInfoRef vstref
  -- Operations with postcondition checks:
  let fdecls = progFuncs prog
  newfuns <- provePostConds ti (postConds ti) fdecls
  return $ updProgFuncs (const newfuns) prog
 where
  provePostConds _  []         fdecls = return fdecls
  provePostConds ti (pof:pofs) fdecls =
    provePostCondition opts ti pof fdecls vstref >>= provePostConds ti pofs

provePostCondition :: Options -> VerifyInfo -> TAFuncDecl -> [TAFuncDecl]
                   -> IORef VState -> IO [TAFuncDecl]
provePostCondition opts ti postfun allfuns vstref = do
  maybe (do putStrLn $ "Postcondition: " ++ pcname ++ "\n" ++
                       "Operation of this postcondition not found!"
            return allfuns)
        --(\checkfun -> provePC checkfun) --TODO: simplify definition
        (\checkfun -> evalStateT (provePC (simpFuncDecl checkfun))
                                 emptyTransState)
        (find (\fd -> toPostCondName (snd (funcName fd)) ==
                      decodeContractName pcname)
              allfuns)
 where
  pcname = snd (funcName postfun)

  provePC checkfun = do
    let (postmn,postfn) = funcName postfun
        mainfunc        = snd (funcName checkfun)
        orgqn           = (postmn, reverse (drop 5 (reverse postfn)))
    -- lift $ putStrLn $ "Check postcondition of operation " ++ mainfunc
    let farity = funcArity checkfun
        ftype  = funcType checkfun
        targsr = zip [1..] (argTypes ftype ++ [resultType ftype])
    bodyformula     <- extractPostConditionProofObligation ti
                         [1 .. farity] (farity+1) (funcRule checkfun)
    precondformula  <- preCondExpOf ti orgqn (init targsr)
    postcondformula <- applyFunc postfun targsr >>= pred2smt
    let title = "verify postcondition of '" ++ mainfunc ++ "'..."
    lift $ printWhenIntermediate opts $ "Trying to " ++ title
    vartypes <- getVarTypes
    pcproof <- lift $
      checkImplication opts vstref ("SMT script to " ++ title) vartypes
                       (tConj [precondformula, bodyformula])
                       tTrue postcondformula
    lift $ modifyIORef vstref (addPostCondToStats mainfunc (isJust pcproof))
    maybe
      (do lift $ (printWhenStatus opts $ mainfunc ++ ": POSTCOND CHECK ADDED")
          return (map (addPostConditionTo (funcName postfun)) allfuns) )
      (\proof -> do
         unless (optNoProof opts) $ lift $
           writeFile ("PROOF_" ++ showQNameNoDots orgqn ++ "_" ++
                      "SatisfiesPostCondition.smt") proof
         lift $ printWhenStatus opts $ mainfunc ++ ": POSTCONDITION VERIFIED"
         return allfuns )
      pcproof

-- If the function declaration is the declaration of the given function name,
-- decorate it with a postcondition check.
addPostConditionTo :: QName -> TAFuncDecl -> TAFuncDecl
addPostConditionTo pfname fdecl = let fn = funcName fdecl in
  if toPostCondQName fn == pfname
    then updFuncBody (const (addPostConditionCheck fn (funcRule fdecl))) fdecl
    else fdecl


extractPostConditionProofObligation :: VerifyInfo -> [Int] -> Int -> TARule
                                    -> TransStateM Term
extractPostConditionProofObligation _ _ _ (AExternal _ s) =
  return $ tComb ("External: " ++ s) []
extractPostConditionProofObligation ti args resvar
                                    (ARule ty orgargs orgexp) = do
  let exp    = rnmAllVars renameRuleVar orgexp
      rtype  = resType (length orgargs) (stripForall ty)
  put $ makeTransState (maximum (resvar : allVars exp) + 1)
                       ((resvar, rtype) : zip args (map snd orgargs))
  binding2SMT True ti (resvar,exp)
 where
  maxArgResult = maximum (resvar : args)
  renameRuleVar r = maybe (r + maxArgResult + 1)
                          (args!!)
                          (elemIndex r (map fst orgargs))

  resType n te =
    if n==0
      then te
      else case te of
             FuncType _ rt -> resType (n-1) rt
             _             -> error $ "Internal errror: resType: " ++ show te

-- Returns the precondition expression for a given operation
-- and its arguments (which are assumed to be variable indices).
-- Rename all local variables by adding the `freshvar` index to them.
preCondExpOf :: VerifyInfo -> QName -> [(Int,TypeExpr)] -> TransStateM Term
preCondExpOf ti qf args =
  maybe (return tTrue)
        (\fd -> applyFunc fd args >>= pred2smt)
        (find (\fd -> decodeContractQName (funcName fd)
                        == toPreCondQName (fromNoCheckQName qf))
              (preConds ti))

-- Returns the postcondition expression for a given operation
-- and its arguments (which are assumed to be variable indices).
-- Rename all local variables by adding `freshvar` to them and
-- return the new freshvar value.
postCondExpOf :: VerifyInfo -> QName -> [(Int,TypeExpr)] -> TransStateM Term
postCondExpOf ti qf args =
  maybe (return tTrue)
        (\fd -> applyFunc fd args >>= pred2smt)
        (find (\fd -> decodeContractQName (funcName fd)
                        == toPostCondQName (fromNoCheckQName qf))
              (postConds ti))

-- Applies a function declaration on a list of arguments,
-- which are assumed to be variable indices, and returns
-- the renamed body of the function declaration.
-- All local variables are renamed by adding `freshvar` to them.
-- Also the new fresh variable index is returned.
applyFunc :: TAFuncDecl -> [(Int,TypeExpr)] -> TransStateM TAExpr
applyFunc fdecl targs = do
  fv <- getFreshVarIndex
  let tsub = maybe (error $ "applyFunc: types\n" ++
                            show (argTypes (funcType fdecl)) ++ "\n" ++
                            show (map snd targs) ++ "\ndo not match!")
                   id
                   (matchTypes (argTypes (funcType fdecl)) (map snd targs))
      (ARule _ orgargs orgexp) = substRule tsub (funcRule fdecl)
      exp = rnmAllVars (renameRuleVar fv orgargs) orgexp
  setFreshVarIndex (max fv (maximum (0 : args ++ allVars exp) + 1))
  return $ simpExpr $ applyArgs exp (drop (length orgargs) args)
 where
  args = map fst targs
  -- renaming function for variables in original rule:
  renameRuleVar fv orgargs r = maybe (r + fv)
                                     (args!!)
                                     (elemIndex r (map fst orgargs))

  applyArgs e [] = e
  applyArgs e (v:vs) =
    -- simple hack for eta-expansion since the type annotations are not used:
    let e_v =  AComb failed FuncCall
                     (pre "apply", failed) [e, AVar failed v]
    in applyArgs e_v vs

-- Translates a Boolean FlatCurry expression into an SMT formula.
pred2smt :: TAExpr -> TransStateM Term
pred2smt exp = case exp of
  AVar _ i              -> return (TSVar i)
  ALit _ l              -> return (lit2SMT l)
  AComb _ ct (qf,ftype) args ->
    if qf == pre "not" && length args == 1
      then do barg <- pred2smt (head args)
              return (tNot barg)
      else do bargs <- mapM pred2smt args
              return (TComb (cons2SMT (ct /= ConsCall || not (null bargs))
                                      False qf ftype) bargs)
  _     -> error $ "Translation of some Boolean expressions into SMT " ++
                   "not yet supported:\n" ++ show (unAnnExpr exp)


-- Translates a binding between a variable (represented by its index
-- in the first component) and a FlatCurry expression (second component).
-- The FlatCurry expression is translated into an SMT formula so that
-- the binding is axiomiatized as an equation between the variable
-- and the translated expression.
-- The translated expression is normalized when necessary.
-- For this purpose, a "fresh variable index" is passed as a state.
-- Moreover, the returned state contains also the types of all fresh variables.
-- If the first argument is `False`, the expression is not strictly demanded,
-- i.e., possible contracts of it (if it is a function call) are ignored.
binding2SMT :: Bool -> VerifyInfo -> (Int,TAExpr) -> TransStateM Term
binding2SMT odemanded vi (oresvar,oexp) =
  exp2smt odemanded (oresvar, simpExpr oexp)
 where
  exp2smt demanded (resvar,exp) = case exp of
    AVar _ i -> return $ if resvar==i then tTrue
                                       else tEquVar resvar (TSVar i)
    ALit _ l -> return (tEquVar resvar (lit2SMT l))
    AComb ty ct (qf,_) args ->
      if qf == pre "?" && length args == 2
        then exp2smt demanded (resvar, AOr ty (args!!0) (args!!1))
        else do
          (bs,nargs) <- normalizeArgs args
          -- TODO: select from 'bindexps' only demanded argument positions
          bindexps <- mapM (exp2smt (isPrimOp qf || optStrict (toolOpts vi))) bs
          comb2smt qf ty ct nargs bs bindexps
    ALet _ bs e -> do
      addVarTypes (map fst bs)
      bindexps <- mapM (exp2smt False) (map (\ ((i,_),ae) -> (i,ae)) bs)
      bexp <- exp2smt demanded (resvar,e)
      return (tConj (bindexps ++ [bexp]))
    AOr _ e1 e2  -> do
      bexp1 <- exp2smt demanded (resvar,e1)
      bexp2 <- exp2smt demanded (resvar,e2)
      return (tDisj [bexp1, bexp2])
    ACase _ _ e brs   -> do
      freshvar <- getFreshVar
      addVarTypes [(freshvar, annExpr e)]
      argbexp <- exp2smt demanded (freshvar,e)
      bbrs    <- mapM branch2smt (map (\b -> (freshvar,b)) brs)
      return (tConj [argbexp, tDisj bbrs])
    ATyped _ e _ -> exp2smt demanded (resvar,e)
    AFree _ _ _ -> error "Free variables not yet supported!"
   where
    comb2smt qf rtype ct nargs bs bindexps
     | qf == pre "otherwise"
       -- specific handling for the moment since the front end inserts it
       -- as the last alternative of guarded rules...
     = return (tEquVar resvar tTrue)
     | ct == ConsCall -- translate data constructor
     = return (tConj (bindexps ++
                      [tEquVar resvar
                               (TComb (cons2SMT (null nargs) False qf rtype)
                                      (map arg2smt nargs))]))
     | qf == pre "apply"
     = -- cannot translate h.o. apply: ignore it
       return tTrue
     | isPrimOp qf
     = return (tConj (bindexps ++
                      [tEquVar resvar (TComb (cons2SMT True False qf rtype)
                                             (map arg2smt nargs))]))
     | otherwise -- non-primitive operation: add contract only if demanded
     = do let targs = zip (map fst bs) (map annExpr nargs)
          precond  <- preCondExpOf vi qf targs
          postcond <- postCondExpOf vi qf (targs ++ [(resvar,rtype)])
          return
            (tConj (bindexps ++ if demanded then [precond,postcond] else []))
    
    branch2smt (cvar, (ABranch p e)) = do
      branchbexp <- exp2smt demanded (resvar,e)
      addVarTypes patvars
      return (tConj [ tEquVar cvar (pat2SMT p), branchbexp])
     where
      patvars = if isConsPattern p
                  then patArgs p
                  else []
  
    arg2smt e = case e of AVar _ i -> TSVar i
                          ALit _ l -> lit2SMT l
                          _        -> error $ "Not normalized: " ++ show e

normalizeArgs :: [TAExpr] -> TransStateM ([(Int,TAExpr)],[TAExpr])
normalizeArgs [] = return ([],[])
normalizeArgs (e:es) = case e of
  AVar _ i -> do (bs,nes) <- normalizeArgs es
                 return ((i,e):bs, e:nes)
  _        -> do fvar <- getFreshVar
                 addVarTypes [(fvar,annExpr e)]
                 (bs,nes) <- normalizeArgs es
                 return ((fvar,e):bs, AVar (annExpr e) fvar : nes)


unzipBranches :: [TABranchExpr] -> ([TAPattern],[TAExpr])
unzipBranches []                 = ([],[])
unzipBranches (ABranch p e : brs) = (p:xs,e:ys)
 where (xs,ys) = unzipBranches brs

---------------------------------------------------------------------------
checkImplication :: Options -> IORef VState -> String -> [(Int,TypeExpr)]
                 -> Term -> Term -> Term -> IO (Maybe String)
checkImplication opts vstref scripttitle vartypes assertion impbindings imp =
  if optVerify opts
    then checkImplicationWithSMT opts vstref scripttitle vartypes
                                 assertion impbindings imp
    else return Nothing

-- Calls the SMT solver to check whether an assertion implies some
-- (pre/post) condition.
-- Returns `Nothing` if the proof was not successful, otherwise
-- the SMT script containing the proof (to obtain `unsat`) is returned.
checkImplicationWithSMT :: Options -> IORef VState -> String -> [(Int,TypeExpr)]
                        -> Term -> Term -> Term -> IO (Maybe String)
checkImplicationWithSMT opts vstref scripttitle vartypes
                        assertion impbindings imp = do
  let allsyms = catMaybes
                  (map (\n -> maybe Nothing Just (untransOpName n))
                       (map qidName
                         (allQIdsOfTerm (tConj [assertion, impbindings, imp]))))
  unless (null allsyms) $ printWhenIntermediate opts $
    "Translating operations into SMT: " ++ unwords (map showQName allsyms)
  (smtfuncs,fdecls,ndinfo) <- funcs2SMT opts vstref allsyms
  smttypes <- genSMTTypes vstref vartypes fdecls [assertion,impbindings,imp]
  let freshvar = maximum (map fst vartypes) + 1
      ([assertionC,impbindingsC,impC],newix) =
         nondetTransL ndinfo freshvar [assertion,impbindings,imp]
      smt = smttypes ++
            [ EmptyLine, smtfuncs, EmptyLine
            , Comment "Free variables:" ] ++
            map typedVar2SMT
                (vartypes ++ map toChoiceVar [freshvar .. newix-1]) ++
            [ EmptyLine
            , Comment "Boolean formula of assertion (known properties):"
            , sAssert assertionC, EmptyLine
            , Comment "Bindings of implication:"
            , sAssert impbindingsC, EmptyLine
            , Comment "Assert negated implication:"
            , sAssert (tNot impC), EmptyLine
            , Comment "check satisfiability:"
            , CheckSat
            , Comment "if unsat, we can omit this part of the contract check"
            ]
  smtstdtypes <- readInclude "Prelude.smt"
  smtchoice   <- if or (map snd ndinfo)
                   then readInclude "Prelude_Choice.smt"
                   else return ""
  let smtprelude = smtstdtypes ++ smtchoice
  callSMT opts $ "; " ++ scripttitle ++ "\n\n" ++ smtprelude ++ showSMT smt
 where
  readInclude f = getIncludePath f >>= readFile
  toChoiceVar i = (i, TCons (pre "Choice") [])

-- Computes SMT type declarations for all types occurring in the
-- variable types, function declarations, or as sorts in SMT terms.
genSMTTypes :: IORef VState -> [(Int,TypeExpr)] -> [TAFuncDecl] -> [Term]
            -> IO [Command]
genSMTTypes vstref vartypes fdecls smtterms = do
  let -- all types occurring in function declarations and variable types:
      alltypes = concatMap typesOfFunc fdecls ++ map snd vartypes
      alltcons = foldr union [] (map tconsOfTypeExpr alltypes)
      -- all sorts occurring in SMT terms:
      allsorts = concatMap sortIdsOfSort (concatMap sortsOfTerm smtterms)
      (pretypes,usertypes) = partition ((== "Prelude") . fst) alltcons
      presorts = nub (filter (`notElem` (map tcons2SMT pretypes)) allsorts) ++
                 map tcons2SMT pretypes
  vst <- readIORef vstref
  let udecls = map (maybe (error "Internal error: some datatype not found!") id)
                   (map (tdeclOf vst) usertypes)
  return $ concatMap preludeSort2SMT presorts ++
           [ EmptyLine ] ++
           (if null udecls
              then []
              else [ Comment "User-defined datatypes:" ] ++
                   map tdecl2SMT udecls)

-- Calls the SMT solver (with a timeout of 2secs) on a given SMTLIB script.
-- Returns `Just` the SMT script if the result is `unsat`, otherwise `Nothing`.
callSMT :: Options -> String -> IO (Maybe String)
callSMT opts smtinput = do
  printWhenIntermediate opts $ "SMT SCRIPT:\n" ++ showWithLineNums smtinput
  printWhenIntermediate opts $ "CALLING Z3..."
  (ecode,out,err) <- evalCmd "z3"
                             ["-smt2", "-in", "-T:" ++ show (optTimeout opts)]
                             smtinput
  when (ecode>0) $ do printWhenIntermediate opts $ "EXIT CODE: " ++ show ecode
                      writeFile "error.smt" smtinput
  printWhenIntermediate opts $ "RESULT:\n" ++ out
  unless (null err) $ printWhenIntermediate opts $ "ERROR:\n" ++ err
  let unsat = let ls = lines out in not (null ls) && head ls == "unsat"
  return $ if unsat
             then Just $ "; proved by: z3 -smt2 <SMTFILE>\n\n" ++ smtinput
             else Nothing

-- Translate a term w.r.t. non-determinism information by
-- adding fresh `Choice` variable arguments to non-deterministic operations.
-- The fresh variable index is passed as a state.
nondetTrans :: [(QName,Bool)] -> Int -> Term -> (Term,Int)
nondetTrans ndinfo ix trm = case trm of
  TConst _ -> (trm,ix)
  TSVar  _ -> (trm,ix)
  TComb f args -> let (targs,i1) = nondetTransL ndinfo ix args
                  in if maybe False
                              (\qn -> maybe False id (lookup qn ndinfo))
                              (untransOpName (qidName f))
                       then (TComb (addChoiceType f) (TSVar i1 : targs), i1+1)
                       else (TComb f targs, i1)
  Forall vs arg -> let (targ,ix1) = nondetTrans ndinfo ix arg
                   in (Forall vs targ, ix1)
  Exists vs arg -> let (targ,ix1) = nondetTrans ndinfo ix arg
                   in (Exists vs targ, ix1)
  ESMT.Let bs e -> let (tbt,ix1) = nondetTransL ndinfo ix (map snd bs)
                       (te,ix2)  = nondetTrans ndinfo ix1 e
                   in (ESMT.Let (zip (map fst bs) tbt) te, ix2)
 where
  addChoiceType (Id n)    = Id n
  addChoiceType (As n tp) = As n (SComb "Func" [SComb "Choice" [], tp])

nondetTransL :: [(QName,Bool)] -> Int -> [Term] -> ([Term],Int)
nondetTransL _ i [] = ([],i)
nondetTransL ndinfo i (t:ts) =
  let (t1,i1) = nondetTrans ndinfo i t
      (ts1,i2) = nondetTransL ndinfo i1 ts
  in (t1:ts1, i2)

-- Operations axiomatized by specific smt scripts (no longer necessary
-- since these scripts are now automatically generated by Curry2SMT.funcs2SMT).
-- However, for future work, it might be reasonable to cache these scripts
-- for faster contract checking.
axiomatizedOps :: [String]
axiomatizedOps = ["Prelude_null","Prelude_take","Prelude_length"]

---------------------------------------------------------------------------
-- Translate a typed variables to an SMT declaration:
typedVar2SMT :: (Int,TypeExpr) -> Command
typedVar2SMT (i,te) = DeclareVar (SV i (polytype2sort te))

-- Gets all type constructors of a type expression.
tconsOfTypeExpr :: TypeExpr -> [QName]
tconsOfTypeExpr (TVar _) = []
tconsOfTypeExpr (FuncType a b) =  union (tconsOfTypeExpr a) (tconsOfTypeExpr b)
tconsOfTypeExpr (TCons qName texps) =
  foldr union [qName] (map tconsOfTypeExpr texps)
tconsOfTypeExpr (ForallType _ te) =  tconsOfTypeExpr te

---------------------------------------------------------------------------
-- Auxiliaries:

--- Returns the path of a file provided as an argument in the `include`
--- directory of the package or, if this does not exists,
--- in the local `include` directory.
--- If both does not exist, a warning is issued.
getIncludePath :: String -> IO String
getIncludePath incfile = do
  ppinclude <- fmap (</> "include" </> incfile) getPackagePath
  exppinclude <- doesFileExist ppinclude
  if exppinclude
    then return ppinclude
    else do
      let localinclude = "include" </> incfile
      exlocalinclude <- doesFileExist localinclude
      if exlocalinclude
        then return localinclude
        else do putStrLn $
                  "Warning: '" ++ localinclude ++ "' required but not found!"
                return incfile

--- Checks whether a file exists in one of the directories on the PATH.
fileInPath :: String -> IO Bool
fileInPath file = do
  path <- getEnv "PATH"
  dirs <- return $ splitOn ":" path
  (fmap (any id)) $ mapM (doesFileExist . (</> file)) dirs

-- Shows a qualified name by replacing all dots by underscores.
showQNameNoDots :: QName -> String
showQNameNoDots = map (\c -> if c=='.' then '_' else c) . showQName

--- Shows a text with line numbers preceded:
showWithLineNums :: String -> String
showWithLineNums txt =
  let txtlines  = lines txt
      maxlog    = ilog (length txtlines + 1)
      showNum n = (take (maxlog - ilog n) (repeat ' ')) ++ show n ++ ": "
  in unlines . map (uncurry (++)) . zip (map showNum [1..]) $ txtlines

---------------------------------------------------------------------------
--- The value of `ilog n` is the floor of the logarithm
--- in the base 10 of `n`.
--- Fails if `n &lt;= 0`.
--- For positive integers, the returned value is
--- 1 less the number of digits in the decimal representation of `n`.
---
--- @param n - The argument.
--- @return the floor of the logarithm in the base 10 of `n`.
ilog :: Int -> Int
ilog n | n>0 = if n<10 then 0 else 1 + ilog (n `div` 10)
types:
TransState TransStateM
unsafe:
safe