definition: |
simpTerm :: Term -> Term simpTerm (TConst l) = TConst l simpTerm (TSVar v) = TSVar v simpTerm (Let bs t) = if null bs then t' else Let bs' t' where bs' = map (\ (v,tm) -> (v, simpTerm tm)) bs t' = simpTerm t simpTerm (Forall vs t) = if null vs then t' else Forall vs t' where t' = simpTerm t simpTerm (Exists vs t) = if null vs then t' else Exists vs t' where t' = simpTerm t simpTerm (TComb f ts) | qidName f == "/=" && length ts == 2 = simpTerm (TComb (Id "not") [TComb (Id "=") ts]) | f == Id "apply" && not (null ts') = case head ts' of TComb s' ts0 -> TComb s' (ts0 ++ tail ts') _ -> fts | f == Id "not" = case ts' of [TComb s' [ts0]] -> if s' == f then ts0 else fts _ -> fts | f == Id "and" = case filter (/= tTrue) ts' of [] -> tTrue cjs -> if tFalse `elem` cjs then tFalse else TComb f (concatMap joinSame cjs) | f == Id "or" = case filter (/= tFalse) ts' of [] -> tFalse djs -> if tTrue `elem` djs then tTrue else TComb f (concatMap joinSame djs) | otherwise = fts where ts' = map simpTerm ts fts = TComb f ts' joinSame arg = case arg of TComb f' args | f==f' -> args _ -> [arg] |
demand: |
argument 1 |
deterministic: |
deterministic operation |
documentation: |
-------------------------------------------------------------------------- -- A simplifier for terms: |
failfree: |
<FAILING> |
indeterministic: |
referentially transparent operation |
infix: |
no fixity defined |
iotype: |
{({TConst}) |-> {TConst} || ({TSVar}) |-> {TSVar} || ({Let}) |-> _ || ({Forall}) |-> _ || ({Exists}) |-> _ || ({TComb}) |-> _} |
name: |
simpTerm |
precedence: |
no precedence defined |
result-values: |
_ |
signature: |
Term -> Term |
solution-complete: |
operation might suspend on free variables |
terminating: |
possibly non-terminating |
totally-defined: |
possibly non-reducible on same data term |