CurryInfo: failfree-4.0.0 / Main

classes:

              
documentation:
-----------------------------------------------------------------------------
--- A tool to verify non-failure properties of Curry operations.
---
--- @author  Michael Hanus
--- @version September 2024
---------------------------------------------------------------------------
name:
Main
operations:
addToAssertion addVarTypes applyFunc axiomatizedOps banner binding2SMT checkImplicationWithSMT emptyTransState getAssertion getFreshVar getFreshVarIndex getFreshVarsForTypes getVarTypes ilog incFreshVarIndex loadAnalysisWithImports main makeTransState missingConsInBranch nonfailCondExpOf nonfailPreCondExpOf normalizeArgs postCondExpOf preCondExpOf pred2SMT proveNonFailingFunc proveNonFailingFuncs proveNonFailingRule renameFreeVars renameLetVars renamePatternVars setAssertion setFreshVarIndex showWithLineNums simpExpr tconsOfTypeExpr test testBoolCase testcv testv typedVar2SMT verifyNonFailingMod verifyNonFailingModules
sourcecode:
module Main where

import Control.Monad      ( unless, when )
import Data.IORef
import Data.List          ( (\\), elemIndex, find, maximum, minimum
                          , partition, union )
import Data.Maybe         ( catMaybes )
import System.Environment ( getArgs )

-- Imports from dependencies:
import Analysis.ProgInfo
import Analysis.TotallyDefined           ( siblingCons )
import Analysis.Types
import CASS.Server                       ( analyzeGeneric, analyzePublic )
import Contract.Names
import Contract.Usage                    ( checkContractUsage )
import Control.Monad.Trans.Class         ( lift )
import Control.Monad.Trans.State         ( StateT, get, put, evalStateT )
import Debug.Profile
import FlatCurry.TypeAnnotated.TypeSubst ( substRule )
import FlatCurry.Files                   ( readFlatCurryInt )
import FlatCurry.Types
import FlatCurry.Annotated.Goodies
import FlatCurry.ShowIntMod              ( showCurryModule )
import RW.Base                           ( ReadWrite )
import System.FilePath                   ( (</>) )
import System.IOExts                     ( evalCmd )
import System.Path                       ( fileInPath )
import System.Process                    ( exitWith )

-- Imports from package modules:
import ESMT
import Curry2SMT
import FlatCurry.Typed.Read
import FlatCurry.Typed.Goodies
import FlatCurry.Typed.Names
import FlatCurry.Typed.Types
import PackageConfig ( packagePath )
import ToolOptions
import VerifierState

------------------------------------------------------------------------
-- To support testing:

test :: Int -> String -> IO ()
test v = verifyNonFailingMod defaultOptions { optVerb = v }

testv :: String -> IO ()
testv = test 3

testcv :: String -> IO ()
testcv = verifyNonFailingMod defaultOptions { optVerb = 3, optContract = True }

------------------------------------------------------------------------

banner :: String
banner = unlines [bannerLine,bannerText,bannerLine]
 where
   bannerText = "Fail-Free Verification Tool for Curry (Version of 28/09/24)"
   bannerLine = take (length bannerText) (repeat '=')

---------------------------------------------------------------------------
main :: IO ()
main = do
  args <- getArgs
  (opts,progs) <- processOptions banner args
  let optname = optName opts
  if not (null optname)
    then putStrLn $ "Non-failure condition for '" ++ optname ++ "':\n" ++
                    encodeContractName (optname ++ "'nonfail")
    else do
      z3exists <- fileInPath "z3"
      if z3exists
        then do
          when (optVerb opts > 0) $ putStrLn banner
          verifyNonFailingModules opts [] progs
        else do
          putStrLn "NON-FAILING ANALYSIS SKIPPED:"
          putStrLn "The SMT solver Z3 is required for the verifier to work"
          putStrLn "but the program 'z3' is not found on the PATH!"
          exitWith 1

verifyNonFailingModules :: Options -> [String] -> [String] -> IO ()
verifyNonFailingModules _ _ [] = return ()
verifyNonFailingModules opts verifiedmods (mod:mods)
  | mod `elem` verifiedmods
  = verifyNonFailingModules opts verifiedmods mods
  | optRec opts
  = do (Prog _ imps _ _ _) <- readFlatCurryInt mod
       let newimps = filter (`notElem` verifiedmods) imps
       if null newimps
         then do printWhenStatus opts ""
                 verifyNonFailingMod opts mod
                 verifyNonFailingModules opts (mod:verifiedmods) mods
         else verifyNonFailingModules opts verifiedmods
                     (newimps ++ mod : (mods \\ newimps))
  | otherwise -- non-recursive
  = do verifyNonFailingMod opts mod
       verifyNonFailingModules opts (mod:verifiedmods) mods
  

verifyNonFailingMod :: Options -> String -> IO ()
verifyNonFailingMod opts modname = do
  printWhenStatus opts $ "Analyzing module '" ++ modname ++ "':"
  prog <- readSimpTypedFlatCurryWithSpec opts modname
  let errs = checkContractUsage (progName prog)
               (map (\fd -> (snd (funcName fd), funcType fd)) (progFuncs prog))
  unless (null errs) $ do
    putStr $ unlines (map showOpError errs)
    exitWith 1
  impprogs <- mapM (readSimpTypedFlatCurryWithSpec opts) (progImports prog)
  let allprogs = prog : impprogs
      vinfo  = foldr addFunsToVerifyInfo (initVerifyInfo opts)
                     (map progFuncs allprogs)
      vstate = foldr addProgToState (initVState vinfo) allprogs
  siblingconsinfo <- loadAnalysisWithImports siblingCons prog
  pi1 <- getProcessInfos
  printWhenAll opts $ unlines $
    ["ORIGINAL PROGRAM:", line, showCurryModule (unAnnProg prog), line]
  vstref <- newIORef vstate
  proveNonFailingFuncs opts siblingconsinfo vstref (progFuncs prog)
  stats <- readIORef vstref
  pi2 <- getProcessInfos
  let tdiff = maybe 0 id (lookup ElapsedTime pi2) -
              maybe 0 id (lookup ElapsedTime pi1)
  when (optTime opts) $ putStrLn $
    "TOTAL VERIFICATION TIME  : " ++ show tdiff ++ " msec"
  when (optVerb opts > 0 || not (isVerified stats)) $
    putStr (showStats stats)
 where
  line = take 78 (repeat '-')

  showOpError (qf,err) =
    snd qf ++ " (module " ++ fst qf ++ "): " ++ err

-- Loads CASS analysis results for a module and its imported entities.
loadAnalysisWithImports ::
  (Read a, Show a, ReadWrite a, Eq a) => Analysis a -> TAProg -> IO (ProgInfo a)
loadAnalysisWithImports analysis prog = do
  maininfo <- analyzeGeneric analysis (progName prog)
                >>= return . either id error
  impinfos <- mapM (\m -> analyzePublic analysis m >>=
                                                     return . either id error)
                    (progImports prog)
  return $ foldr combineProgInfo maininfo impinfos

---------------------------------------------------------------------------
-- The state of the transformation process contains
-- * the current assertion
-- * a fresh variable index
-- * a list of all introduced variables and their types:
data TransState = TransState
  { cAssertion :: Term
  , freshVar   :: Int
  , varTypes   :: [(Int,TypeExpr)]
  }

makeTransState :: Int -> [(Int,TypeExpr)] -> TransState
makeTransState = TransState tTrue

emptyTransState :: TransState
emptyTransState = makeTransState 0 []

-- The type of the state monad contains the transformation state.
--type TransStateM a = State TransState a
type TransStateM a = StateT TransState IO a

-- Gets the current fresh variable index of the state.
getFreshVarIndex :: TransStateM Int
getFreshVarIndex = get >>= return . freshVar

-- Sets the fresh variable index in the state.
setFreshVarIndex :: Int -> TransStateM ()
setFreshVarIndex fvi = do
  st <- get
  put $ st { freshVar = fvi }

-- Gets a fresh variable index and increment the index in the state.
getFreshVar :: TransStateM Int
getFreshVar = do
  st <- get
  put $ st { freshVar = freshVar st + 1 }
  return $ freshVar st

-- Increments fresh variable index.
incFreshVarIndex :: TransState -> TransState
incFreshVarIndex st = st { freshVar = freshVar st + 1 }

-- Gets the variables and their types stored in the state.
getVarTypes :: TransStateM [(Int,TypeExpr)]
getVarTypes = get >>= return . varTypes

-- Adds variables and their types to the state.
addVarTypes :: [(Int,TypeExpr)] -> TransStateM ()
addVarTypes vts = do
  st <- get
  put $ st { varTypes = vts ++ varTypes st }

-- Gets the current assertion stored in the state.
getAssertion :: TransStateM Term
getAssertion = get >>= return . cAssertion

-- Sets the current assertion in the state.
setAssertion :: Term -> TransStateM ()
setAssertion formula = do
  st <- get
  put $ st { cAssertion = formula }

-- Add a formula to the current assertion in the state by conjunction.
addToAssertion :: Term -> TransStateM ()
addToAssertion formula = do
  st <- get
  put $ st { cAssertion = tConj [cAssertion st, formula] }

---------------------------------------------------------------------------
-- Prove that a list of defined functions is fail free (w.r.t. their
-- non-fail conditions).
proveNonFailingFuncs :: Options -> ProgInfo [(QName,Int)] -> IORef VState
                     -> [TAFuncDecl] -> IO ()
proveNonFailingFuncs opts siblingconsinfo vstref =
  mapM_ (proveNonFailingFunc opts siblingconsinfo vstref)

-- Prove that a function is fail free (w.r.t. their non-fail condition).
proveNonFailingFunc :: Options -> ProgInfo [(QName,Int)] -> IORef VState
                    -> TAFuncDecl -> IO ()
proveNonFailingFunc opts siblingconsinfo vstref fdecl =
  unless (isContractOp (funcName fdecl) || isProperty fdecl) $ do
    printWhenIntermediate opts $
      "Operation to be analyzed: " ++ snd (funcName fdecl)
    modifyIORef vstref incNumAllInStats
    let efdecl = etaExpandFuncDecl fdecl
    proveNonFailingRule opts siblingconsinfo vstref
                        (funcName efdecl) (funcType efdecl)
                        (funcRule efdecl)

-- Prove that a function rule is fail free (w.r.t. their non-fail condition).
-- The rule is in eta-expanded form.
proveNonFailingRule :: Options -> ProgInfo [(QName,Int)] -> IORef VState
                    -> QName -> TypeExpr -> TARule -> IO ()
proveNonFailingRule _ _ vstref qn ftype (AExternal _ _) = do
  ti <- readVerifyInfoRef vstref
  let atypes = argTypes ftype
      args   = zip [1 .. length atypes] atypes
  nfcond <- evalStateT (nonfailPreCondExpOf ti qn ftype args) emptyTransState
  unless (nfcond == tTrue) $ modifyIORef vstref incNumNFCInStats
proveNonFailingRule opts siblingconsinfo vstref qn@(_,fn) ftype
                    (ARule _ rargs rhs) = do
  ti <- readVerifyInfoRef vstref
  let st = makeTransState (maximum (0 : map fst rargs ++ allVars rhs) + 1) rargs
  (flip evalStateT) st $ do
    -- compute non-fail precondition of operation:
    precondformula <- nonfailPreCondExpOf ti qn ftype rargs
    setAssertion precondformula
    unless (precondformula == tTrue) $ lift $
      modifyIORef vstref incNumNFCInStats
    -- verify only if the precondition is different from always failing:
    unless (precondformula == tFalse) $ proveNonFailExp ti rhs
 where
  proveNonFailExp ti exp = case simpExpr exp of
    AComb _ ct (qf,qfty) args -> do
      mapM_ (proveNonFailExp ti) args
      when (isCombTypeFuncPartCall ct) $
        let qnnonfail = toNonFailQName qf
        in maybe
             (return ()) -- h.o. call nonfailing if op. has no non-fail cond.
             (\_ -> lift $ do
               let reason = "due to call '" ++ ppTAExpr exp ++ "'"
               modifyIORef vstref (addFailedFuncToStats fn reason)
               printWhenIntermediate opts $
                 fn ++ ": POSSIBLY FAILING CALL OF '" ++ snd qf ++ "'")
             (find (\fd -> funcName fd == qnnonfail) (nfConds ti))
      when (ct==FuncCall) $ do
        lift $ printWhenIntermediate opts $ "Analyzing call to " ++ snd qf
        precond <- getAssertion
        (bs,_)   <- normalizeArgs args
        bindexps <- mapM (binding2SMT True ti) bs
        let callargs = zip (map fst bs) (map annExpr args)
        nfcondcall <- nonfailPreCondExpOf ti qf qfty callargs
        -- TODO: select from 'bindexps' only demanded argument positions
        vartypes <- getVarTypes
        valid <- if nfcondcall == tTrue
                   then return (Just True) -- true non-fail cond. is valid
                   else lift $ do
                     modifyIORef vstref incFailTestInStats
                     let title = "SMT script to verify non-failing call of '" ++
                                 snd qf ++ "' in function '" ++ fn ++ "'"
                     checkImplicationWithSMT opts vstref title vartypes
                       precond (tConj bindexps) nfcondcall
        if valid == Just True
          then lift $ printWhenIntermediate opts $
                 fn ++ ": NON-FAILING CALL OF '" ++ snd qf ++ "'"
          else lift $ do
            let reason = if valid == Nothing
                           then "due to SMT error"
                           else "due to call '" ++ ppTAExpr exp ++ "'"
            modifyIORef vstref (addFailedFuncToStats fn reason)
            printWhenIntermediate opts $
              fn ++ ": POSSIBLY FAILING CALL OF '" ++ snd qf ++ "'"
    ACase _ _ e brs -> do
      proveNonFailExp ti e
      maybe
       (do -- check a case expression for missing constructors:
          freshvar <- getFreshVar
          let freshtypedvar = (freshvar, annExpr e)
          be <- binding2SMT True ti (freshvar,e)
          addToAssertion be
          addVarTypes [freshtypedvar]
          let misscons = missingConsInBranch siblingconsinfo brs
          st <- get -- use same state to prove missing and non-fail branches
          mapM_ (verifyMissingCons freshtypedvar exp) misscons
          put st
          mapM_ (proveNonFailBranch ti freshtypedvar) brs
       )
       (\ (fe,te) -> do
           -- check a Boolean case with True/False branch:
           be <- pred2SMT e
           st <- get
           addToAssertion (tNot be)
           proveNonFailExp ti fe
           put st
           addToAssertion be
           proveNonFailExp ti te
       )
       (testBoolCase brs)
    AOr _ e1 e2 -> do st <- get -- use same state for both branches
                      proveNonFailExp ti e1
                      put st
                      proveNonFailExp ti e2
    ALet _ bs e -> do (rbs,re) <- renameLetVars bs e
                      mapM_ (proveNonFailExp ti) (map snd rbs)
                      proveNonFailExp ti re
    AFree _ fvs e -> do (_,re) <- renameFreeVars fvs e
                        proveNonFailExp ti re
    ATyped _ e _ -> proveNonFailExp ti e
    AVar _ _ -> return ()
    ALit _ _ -> return ()

  -- verify whether a variable (2. argument) can have the constructor (3. arg.)
  -- as a value w.r.t. the collected assertions
  verifyMissingCons (var,vartype) exp (cons,_) = do
    let title = "check missing constructor case '" ++ snd cons ++
                "' in function '" ++ fn ++ "'"
    lift $ printWhenIntermediate opts $
      title ++ "\nVAR: " ++ show (var,vartype) ++ "\nCASE:: " ++
      show (unAnnExpr (simpExpr exp))
    lift $ modifyIORef vstref incPatTestInStats
    
    vartypes <- getVarTypes
    precond  <- getAssertion
    valid <- lift $ checkImplicationWithSMT opts vstref
                      ("SMT script to " ++ title) vartypes precond tTrue
                      (tNot (constructorTest False cons (TSVar var) vartype))
    unless (valid == Just True) $ lift $ do
      let reason = if valid == Nothing
                     then "due to SMT error"
                     else "maybe not defined on constructor '" ++
                          showQName cons ++ "'"
      modifyIORef vstref (addFailedFuncToStats fn reason)
      printWhenIntermediate opts $
        "POSSIBLY FAILING BRANCH in function '" ++ fn ++
        "' with constructor " ++ snd cons

  proveNonFailBranch ti (var,vartype) branch = do
    ABranch p e <- renamePatternVars branch
    -- set pattern type correctly (important for [] pattern)
    let bpat = pat2SMT (setAnnPattern vartype p)
    addToAssertion (tEquVar var bpat)
    proveNonFailExp ti e

-- Returns the constructors (name/arity) which are missing in the given
-- branches of a case construct.
missingConsInBranch :: ProgInfo [(QName,Int)] -> [TABranchExpr] -> [(QName,Int)]
missingConsInBranch _ [] =
  error "missingConsInBranch: case with empty branches!"
missingConsInBranch _ (ABranch (ALPattern _ _) _ : _) =
  error "TODO: case with literal pattern"
missingConsInBranch siblingconsinfo
                    (ABranch (APattern _ (cons,_) _) _ : brs) =
  let othercons = maybe (error $ "Sibling constructors of " ++
                                 showQName cons ++ " not found!")
                        id
                        (lookupProgInfo cons siblingconsinfo)
      branchcons = map (patCons . branchPattern) brs
  in filter ((`notElem` branchcons) . fst) othercons

-- Simplifies a FlatCurry expression (only at the top-level!)
-- by considering the semantics of some predefined operations.
simpExpr :: TAExpr -> TAExpr
simpExpr exp = case exp of
  AComb ty FuncCall (qf,_) args ->
    if qf == pre "?"
      then AOr ty (args!!0) (args!!1)
      else if qf == pre "ord" || qf == pre "id" -- ops without preconditions
             then head args -- note: Char is implemented as Int in SMT
             else exp
  _ -> exp

-- Translates a FlatCurry expression to a Boolean formula representing
-- the binding of a variable (represented by its index in the first
-- component) to the translated expression (second component).
-- The translated expression is normalized when necessary.
-- For this purpose, a "fresh variable index" is passed as a state.
-- Moreover, the returned state contains also the types of all fresh variables.
-- If the first argument is `False`, the expression is not strictly demanded,
-- i.e., possible contracts of it (if it is a function call) are ignored.
binding2SMT :: Bool -> VerifyInfo -> (Int,TAExpr) -> TransStateM Term
binding2SMT demanded ti (resvar,exp) =
 case simpExpr exp of
  AVar _ i -> return $ if resvar==i then tTrue
                                    else tEquVar resvar (TSVar i)
  ALit _ l -> return (tEquVar resvar (lit2SMT l))
  AComb rtype ct (qf,_) args -> do
    (bs,nargs) <- normalizeArgs args
    -- TODO: select from 'bindexps' only demanded argument positions
    bindexps <- mapM (binding2SMT (isPrimOp qf || optStrict (toolOpts ti)) ti)
                     bs
    comb2bool qf rtype ct nargs bs bindexps
  ALet _ bs e -> do
    bindexps <- mapM (binding2SMT False ti)
                    (map (\ ((i,_),ae) -> (i,ae)) bs)
    bexp <- binding2SMT demanded ti (resvar,e)
    return (tConj (bindexps ++ [bexp]))
  AOr _ e1 e2  -> do
    bexp1 <- binding2SMT demanded ti (resvar,e1)
    bexp2 <- binding2SMT demanded ti (resvar,e2)
    return (tDisj [bexp1, bexp2])
  ACase _ _ e brs   -> do
    freshvar <- getFreshVar
    addVarTypes [(freshvar, annExpr e)]
    argbexp <- binding2SMT demanded ti (freshvar,e)
    bbrs    <- mapM branch2bool (map (\b->(freshvar,b)) brs)
    return (tConj [argbexp, tDisj bbrs])
  ATyped _ e _ -> binding2SMT demanded ti (resvar,e)
  AFree _ _ _ -> error "Free variables not yet supported!"
 where
   comb2bool qf rtype ct nargs bs bindexps
    | qf == pre "otherwise"
      -- specific handling for the moment since the front end inserts it
      -- as the last alternative of guarded rules...
    = return (tEquVar resvar tTrue)
    | ct == ConsCall
    = return (tConj (bindexps ++
                    [tEquVar resvar
                             (TComb (cons2SMT (null nargs) False qf rtype)
                                    (map arg2bool nargs))]))
    | qf == pre "apply"
    = -- cannot translate h.o. apply: ignore it
      return tTrue
    | isPrimOp qf
    = return (tConj (bindexps ++
                    [tEquVar resvar
                             (TComb (cons2SMT True False qf rtype)
                                    (map arg2bool nargs))]))
    | otherwise -- non-primitive operation: add contract only if demanded
    = do let targs = zip (map fst bs) (map annExpr nargs)
         precond  <- preCondExpOf ti qf targs
         postcond <- postCondExpOf ti qf (targs ++ [(resvar,rtype)])
         return (tConj (bindexps ++
                       if demanded && optContract (toolOpts ti)
                         then [precond,postcond]
                         else []))
   
   branch2bool (cvar, ABranch p e) = do
     branchbexp <- binding2SMT demanded ti (resvar,e)
     addVarTypes patvars
     return (tConj [ tEquVar cvar (pat2SMT p), branchbexp])
    where
     patvars = if isConsPattern p
                 then patArgs p
                 else []

   arg2bool e = case e of AVar _ i -> TSVar i
                          ALit _ l -> lit2SMT l
                          _ -> error $ "Not normalized: " ++ show e

-- Returns the conjunction of the non-failure condition and precondition
-- (if the tool option `contract` is set) expression for a given operation
-- and its arguments (which are assumed to be variable indices).
-- Rename all local variables by adding the `freshvar` index to them.
nonfailPreCondExpOf :: VerifyInfo -> QName -> TypeExpr -> [(Int,TypeExpr)]
                    -> TransStateM Term
nonfailPreCondExpOf ti qf ftype args =
  if optContract (toolOpts ti)
    then do
      (fvars,nfcond) <- nonfailCondExpOf ti qf ftype args
      precond <- preCondExpOf ti qf (args ++ fvars)
      -- simplify term in order to check later for trivial precondition
      return (simpTerm (tConj [nfcond,precond]))
    else do
      (_,rt) <- nonfailCondExpOf ti qf ftype args
      return rt

-- Returns the non-failure condition expression for a given operation
-- and its arguments (which are assumed to be variable indices).
-- All local variables are renamed by adding the `freshvar` index to them.
-- If the non-failure condition requires more arguments (due to a
-- higher-order call), fresh arguments are added which are also returned.
nonfailCondExpOf :: VerifyInfo -> QName -> TypeExpr -> [(Int,TypeExpr)]
                 -> TransStateM ([(Int,TypeExpr)], Term)
nonfailCondExpOf ti qf ftype args =
  maybe
    (predefs qf)
    (\fd -> let moreargs = funcArity fd - length args in
            if moreargs > 0
              then do
                -- eta-expand function call with fresh variables so that one
                -- can check non-fail conditions with a greater arity:
                let etatypes = argTypes (dropArgTypes (length args) ftype)
                fvars <- getFreshVarsForTypes (take moreargs etatypes)
                rt    <- applyFunc fd (args ++ fvars) >>= pred2SMT
                return (fvars,rt)
              else if moreargs < 0
                     then error $ "Operation '" ++ snd qf ++
                                  "': nonfail condition has too few arguments!"
                     else do rt <- applyFunc fd args >>= pred2SMT
                             return ([],rt) )
    (find (\fd -> decodeContractQName (funcName fd) == toNonFailQName qf)
          (nfConds ti))
 where
  predefs qn | qn `elem` [pre "failed", pre "=:="] ||
               (qn == pre "error" && optError (toolOpts ti))
             = return ([], tFalse)
             | otherwise
             = return ([], tTrue)

-- Returns the precondition expression for a given operation
-- and its arguments (which are assumed to be variable indices).
-- Rename all local variables by adding the `freshvar` index to them.
preCondExpOf :: VerifyInfo -> QName -> [(Int,TypeExpr)] -> TransStateM Term
preCondExpOf ti qf args =
  maybe (return tTrue)
        (\fd -> applyFunc fd args >>= pred2SMT)
        (find (\fd -> funcName fd == toPreCondQName qf) (preConds ti))

-- Returns the postcondition expression for a given operation
-- and its arguments (which are assumed to be variable indices).
-- Rename all local variables by adding `freshvar` to them and
-- return the new freshvar value.
postCondExpOf :: VerifyInfo -> QName -> [(Int,TypeExpr)] -> TransStateM Term
postCondExpOf ti qf args =
  maybe (return tTrue)
        (\fd -> applyFunc fd args >>= pred2SMT)
        (find (\fd -> funcName fd == toPostCondQName qf) (postConds ti))


-- Applies a function declaration on a list of arguments,
-- which are assumed to be variable indices, and returns
-- the renamed body of the function declaration.
-- All local variables are renamed by adding `freshvar` to them.
-- Also the new fresh variable index is returned.
applyFunc :: TAFuncDecl -> [(Int,TypeExpr)] -> TransStateM TAExpr
applyFunc fdecl targs = do
  fv <- getFreshVarIndex
  let tsub = maybe (error $ "applyFunc: types\n" ++
                            show (argTypes (funcType fdecl)) ++ "\n" ++
                            show (map snd targs) ++ "\ndo not match!")
                   id
                   (matchTypes (argTypes (funcType fdecl)) (map snd targs))
      (ARule _ orgargs orgexp) = substRule tsub (funcRule fdecl)
      exp = rnmAllVars (renameRuleVar fv orgargs) orgexp
  setFreshVarIndex (max fv (maximum (0 : args ++ allVars exp) + 1))
  return $ simpExpr $ applyArgs exp (drop (length orgargs) args)
 where
  args = map fst targs
  -- renaming function for variables in original rule:
  renameRuleVar fv orgargs r = maybe (r + fv)
                                     (args!!)
                                     (elemIndex r (map fst orgargs))

  applyArgs e [] = e
  applyArgs e (v:vs) =
    -- simple hack for eta-expansion since the type annotations are not used:
    -- TODO: compute correct type annotations!!! (required for overloaded nils)
    let e_v =  AComb failed FuncCall
                     (pre "apply", failed) [e, AVar failed v]
    in applyArgs e_v vs

-- Translates a Boolean FlatCurry expression into a Boolean formula.
-- Calls to user-defined functions are replaced by the first argument
-- (which might be true or false).
pred2SMT :: TAExpr -> TransStateM Term
pred2SMT exp = case simpExpr exp of
  AVar  _ i                  -> return (TSVar i)
  ALit  _ l                  -> return (lit2SMT l)
  AComb _ ct (qf,ftype) args -> comb2bool qf ftype ct (length args) args
  _                          -> return (tComb (show exp) []) -- TODO!
 where
  comb2bool qf ftype ct ar args
    | qf == pre "[]" && ar == 0
    = return (sortedConst "nil" (polytype2sort (annExpr exp)))
    | qf == pre "not" && ar == 1
    = do barg <- pred2SMT (head args)
         return (tNot barg)
    | qf == pre "null" && ar == 1
    = do let arg = head args
         barg    <- pred2SMT arg
         vartype <- typeOfVar arg
         return (tEqu barg (sortedConst "nil" (polytype2sort vartype)))
    | qf == pre "apply"
    = do -- cannot translate h.o. apply: replace it by new variable
         fvar <- getFreshVar
         addVarTypes [(fvar,annExpr exp)]
         return (TSVar fvar)
    | qf == pre "/="
    = do be <- comb2bool (pre "==") ftype ct ar args
         return (tNot be)
    | otherwise
    = do bargs <- mapM pred2SMT args
         return (TComb (cons2SMT (ct /= ConsCall || not (null bargs))
                                 False qf ftype)
                       bargs)

  typeOfVar e = do
    vartypes <- getVarTypes
    case e of
      AVar _ i -> maybe
                    (error $ "pred2SMT: variable " ++ show i ++ " not found")
                    return
                    (lookup i vartypes)
      _        -> return $ annExpr e -- might not be correct due to applyFunc!
 
normalizeArgs :: [TAExpr] -> TransStateM ([(Int,TAExpr)],[TAExpr])
normalizeArgs [] = return ([],[])
normalizeArgs (e:es) = case e of
  AVar _ i -> do (bs,nes) <- normalizeArgs es
                 return ((i,e):bs, e:nes)
  _        -> do fvar <- getFreshVar
                 addVarTypes [(fvar,annExpr e)]
                 (bs,nes) <- normalizeArgs es
                 return ((fvar,e):bs, AVar (annExpr e) fvar : nes)


-- Get for the types (given in the first argument) fresh typed variables.
getFreshVarsForTypes :: [TypeExpr] -> TransStateM [(VarIndex, TypeExpr)]
getFreshVarsForTypes types = do
  fv <- getFreshVarIndex
  let n     = length types
      vars  = take n [fv ..]
      tvars = zip vars types
  setFreshVarIndex (fv + n)
  addVarTypes tvars
  return tvars


-- Rename let-bound variables in a let expression.
renameLetVars :: [((VarIndex, TypeExpr), TAExpr)] -> TAExpr
              -> TransStateM ([((VarIndex, TypeExpr), TAExpr)], TAExpr)
renameLetVars bindings exp = do
  fv <- getFreshVarIndex
  let args = map (fst . fst) bindings
      minarg = minimum (0 : args)
      maxarg = maximum (0 : args)
      rnm i = if i `elem` args then i - minarg + fv else i
      nargs = map (\ ((v,t),_) -> (rnm v,t)) bindings
  setFreshVarIndex (fv + maxarg - minarg + 1)
  addVarTypes nargs
  return (map (\ ((v,t),be) -> ((rnm v,t), rnmAllVars rnm be)) bindings,
          rnmAllVars rnm exp)


-- Rename free variables introduced in an expression.
renameFreeVars :: [(VarIndex, TypeExpr)] -> TAExpr
               -> TransStateM ([(VarIndex, TypeExpr)], TAExpr)
renameFreeVars freevars exp = do
  fv <- getFreshVarIndex
  let args = map fst freevars
      minarg = minimum (0 : args)
      maxarg = maximum (0 : args)
      rnm i = if i `elem` args then i - minarg + fv else i
      nargs = map (\ (v,t) -> (rnm v,t)) freevars
  setFreshVarIndex (fv + maxarg - minarg + 1)
  addVarTypes nargs
  return (map (\ (v,t) -> (rnm v,t)) freevars, rnmAllVars rnm exp)


-- Rename argument variables of constructor pattern
renamePatternVars :: TABranchExpr -> TransStateM TABranchExpr
renamePatternVars (ABranch p e) = do
  if isConsPattern p
    then do fv <- getFreshVarIndex
            let args = map fst (patArgs p)
                minarg = minimum (0 : args)
                maxarg = maximum (0 : args)
                rnm i = if i `elem` args then i - minarg + fv else i
                nargs = map (\ (v,t) -> (rnm v,t)) (patArgs p)
            setFreshVarIndex (fv + maxarg - minarg + 1)
            addVarTypes nargs
            return $ ABranch (updPatArgs (map (\ (v,t) -> (rnm v,t))) p)
                             (rnmAllVars rnm e)
    else return $ ABranch p e

---------------------------------------------------------------------------
-- Calls the SMT solver to check whether an assertion implies some
-- property.
checkImplicationWithSMT :: Options -> IORef VState -> String -> [(Int,TypeExpr)]
                        -> Term -> Term -> Term -> IO (Maybe Bool)
checkImplicationWithSMT opts vstref scripttitle vartypes
                        assertion impbindings imp = do
  let (pretypes,usertypes) =
         partition ((== "Prelude") . fst)
                   (foldr union [] (map (tconsOfTypeExpr . snd) vartypes))
  vst <- readIORef vstref
  let allsyms = catMaybes
                  (map (\n -> maybe Nothing Just (untransOpName n))
                       (map qidName
                         (allQIdsOfTerm (tConj [assertion, impbindings, imp]))))
  unless (null allsyms) $ printWhenIntermediate opts $
    "Translating operations into SMT: " ++
    unwords (map showQName allsyms)
  smtfuncs <- funcs2SMT vstref allsyms
  let decls = map (maybe (error "Internal error: some datatype not found!") id)
                  (map (tdeclOf vst) usertypes)
      smt   = concatMap preludeType2SMT (map snd pretypes) ++
              [ EmptyLine ] ++
              (if null decls
                 then []
                 else [ Comment "User-defined datatypes:" ] ++
                      map tdecl2SMT decls) ++
              [ EmptyLine, smtfuncs, EmptyLine
              , Comment "Free variables:" ] ++
              map typedVar2SMT vartypes ++
              [ EmptyLine
              , Comment "Boolean formula of assertion (known properties):"
              , sAssert assertion, EmptyLine
              , Comment "Bindings of implication:"
              , sAssert impbindings, EmptyLine
              , Comment "Assert negated implication:"
              , sAssert (tNot imp), EmptyLine
              , Comment "check satisfiability:"
              , CheckSat
              , Comment "if unsat, the implication is valid"
              ]
  --putStrLn $ "SMT commands as Curry term:\n" ++ show smt
  smtprelude <- readFile (packagePath </> "include" </> "Prelude.smt")
  let smtinput = "; " ++ scripttitle ++ "\n\n" ++ smtprelude ++ showSMT smt
  printWhenAll opts $ "SMT SCRIPT:\n" ++ showWithLineNums smtinput
  printWhenAll opts $ "CALLING Z3 (with options: -smt2 -T:5)..."
  (ecode,out,err) <- evalCmd "z3" ["-smt2", "-in", "-T:5"] smtinput
  when (ecode>0) $ do printWhenAll opts $ "EXIT CODE: " ++ show ecode
                      writeFile "error.smt" smtinput
  printWhenAll opts $ "RESULT:\n" ++ out
  unless (null err) $ printWhenAll opts $ "ERROR:\n" ++ err
  let pcvalid = let ls = lines out in not (null ls) && head ls == "unsat"
  return (if ecode>0 then Nothing else Just pcvalid)


-- Operations axiomatized by specific smt scripts (no longer necessary
-- since these scripts are now automatically generated by Curry2SMT.funcs2SMT).
-- However, for future work, it might be reasonable to cache these scripts
-- for faster contract checking.
axiomatizedOps :: [String]
axiomatizedOps = ["Prelude_null","Prelude_take","Prelude_length"]

---------------------------------------------------------------------------
-- Translate a typed variables to an SMT declaration:
typedVar2SMT :: (Int,TypeExpr) -> Command
typedVar2SMT (i,te) = DeclareVar (SV i (polytype2sort te))

-- Gets all type constructors of a type expression.
tconsOfTypeExpr :: TypeExpr -> [QName]
tconsOfTypeExpr (TVar _) = []
tconsOfTypeExpr (FuncType a b) =  union (tconsOfTypeExpr a) (tconsOfTypeExpr b)
tconsOfTypeExpr (TCons qName texps) =
  foldr union [qName] (map tconsOfTypeExpr texps)
tconsOfTypeExpr (ForallType _ te) =  tconsOfTypeExpr te

---------------------------------------------------------------------------
-- Auxiliaries:

--- Tests whether the given branches of a case expressions
--- are a Boolean case distinction.
--- If yes, the expressions of the `False` and `True` branch
--- are returned.
testBoolCase :: [TABranchExpr] -> Maybe (TAExpr,TAExpr)
testBoolCase brs =
  if length brs /= 2 then Nothing
                     else case (brs!!0, brs!!1) of
    (ABranch (APattern _ (c1,_) _) e1, ABranch (APattern _ (c2,_) _) e2) ->
      if c1 == pre "False" && c2 == pre "True"  then Just (e1,e2) else
      if c1 == pre "True"  && c2 == pre "False" then Just (e2,e1) else Nothing
    _ -> Nothing

--- Shows a text with line numbers prefixed:
showWithLineNums :: String -> String
showWithLineNums txt =
  let txtlines  = lines txt
      maxlog    = ilog (length txtlines + 1)
      showNum n = (take (maxlog - ilog n) (repeat ' ')) ++ show n ++ ": "
  in unlines . map (uncurry (++)) . zip (map showNum [1..]) $ txtlines

--- The value of `ilog n` is the floor of the logarithm
--- in the base 10 of `n`.
--- Fails if `n &lt;= 0`.
--- For positive integers, the returned value is
--- 1 less the number of digits in the decimal representation of `n`.
---
--- @param n - The argument.
--- @return the floor of the logarithm in the base 10 of `n`.
ilog :: Int -> Int
ilog n | n>0 = if n<10 then 0 else 1 + ilog (n `div` 10)

---------------------------------------------------------------------------

{-

Still to be done:

- consider encapsulated search


Verified system libraries:

- Prelude
- Char
- Either
- ErrorState
- Integer
- Maybe
- State
- ShowS

 Prelude Char Either ErrorState Integer Maybe State ShowS

-}
types:
TransState TransStateM
unsafe:
unsafe due to modules CASS.Registry Analysis.NondetOps System.IO.Unsafe Analysis.UnsafeModule