definition: |
optimizeFun :: [(QName,[QName])] -> [(QName,Bool)] -> FuncDecl -> (Maybe QName,Int,Int,FuncDecl) optimizeFun depinfo lininfo (Func qn ar vis ty (Rule vs e)) = let (cyc,nsu,lnsu,opte) = optimizeExp (isDependent depinfo qn,lininfo) e in (if cyc then Just qn else Nothing, nsu, lnsu, Func qn ar vis ty (Rule vs opte)) optimizeFun _ _ (Func qn ar vis ty (External e)) = (Nothing,0,0,Func qn ar vis ty (External e)) |
demand: |
argument 3 |
deterministic: |
deterministic operation |
documentation: |
-- Optimize a single function definition. -- The first argument is the list of all functions together with a flag -- whether they are defined by right-linear rules and functions. -- The result is (n,l,fd) where n is the number of non-strict equalities -- in the function definition, l is the number of optimized linear -- non-strict equalities, and fd is the optimized function definition. |
failfree: |
<FAILING> |
indeterministic: |
referentially transparent operation |
infix: |
no fixity defined |
iotype: |
{(_,_,{Func}) |-> {(,,,)}} |
name: |
optimizeFun |
precedence: |
no precedence defined |
result-values: |
{(,,,)} |
signature: |
[((String, String), [(String, String)])] -> [((String, String), Prelude.Bool)] -> FlatCurry.Types.FuncDecl -> (Prelude.Maybe (String, String), Prelude.Int, Prelude.Int, FlatCurry.Types.FuncDecl) |
solution-complete: |
operation might suspend on free variables |
terminating: |
possibly non-terminating |
totally-defined: |
possibly non-reducible on same data term |