definition: |
leq :: Nat -> Nat -> Bool leq Z _ = True leq (S _) Z = False leq (S x) (S y) = leq x y |
demand: |
argument 1 |
deterministic: |
deterministic operation |
documentation: |
-- less-or-equal predicated on natural numbers: |
failfree: |
(_, _) |
indeterministic: |
referentially transparent operation |
infix: |
no fixity defined |
iotype: |
{({Z},_) |-> {True} || ({S},{Z}) |-> {False} || ({S},{S}) |-> {False,True}} |
name: |
leq |
precedence: |
no precedence defined |
result-values: |
{False,True} |
signature: |
Nat -> Nat -> Prelude.Bool |
solution-complete: |
operationally complete operation |
terminating: |
yes |
totally-defined: |
reducible on all ground data terms |