sourcecode:
|
module Rewriting.Substitution
( Subst
, showSubst, emptySubst, extendSubst, listToSubst, lookupSubst, applySubst
, applySubstEq, applySubstEqs, restrictSubst, composeSubst
) where
import qualified Data.Map as Map
import Data.Tuple.Extra (both)
import Data.List (intercalate)
import Data.Maybe (fromMaybe)
import Rewriting.Term
-- ---------------------------------------------------------------------------
-- Representation of substitutions on first-order terms
-- ---------------------------------------------------------------------------
--- A substitution represented as a finite map from variables to terms and
--- parameterized over the kind of function symbols, e.g., strings.
type Subst f = Map.Map VarIdx (Term f)
-- ---------------------------------------------------------------------------
-- Pretty-printing of substitutions on first-order terms
-- ---------------------------------------------------------------------------
-- \x21a6 = RIGHTWARDS ARROW FROM BAR
--- Transforms a substitution into a string representation.
showSubst :: (f -> String) -> Subst f -> String
showSubst s sub = "{" ++ intercalate "," (map showMapping (Map.toList sub)) ++ "}"
where
showMapping (v, t) = showVarIdx v ++ " \x21a6 " ++ showTerm s t
-- ---------------------------------------------------------------------------
-- Functions for substitutions on first-order terms
-- ---------------------------------------------------------------------------
--- The empty substitution.
emptySubst :: Subst _
emptySubst = Map.empty
--- Extends a substitution with a new mapping from the given variable to the
--- given term. An already existing mapping with the same variable will be
--- thrown away.
extendSubst :: Subst f -> VarIdx -> Term f -> Subst f
extendSubst m v t = Map.insert v t m
--- Returns a substitution that contains all the mappings from the given list.
--- For multiple mappings with the same variable, the last corresponding
--- mapping of the given list is taken.
listToSubst :: [(VarIdx, Term f)] -> Subst f
listToSubst = Map.fromList
--- Returns the term mapped to the given variable in a substitution or
--- `Nothing` if no such mapping exists.
lookupSubst :: Subst f -> VarIdx -> Maybe (Term f)
lookupSubst = flip Map.lookup
--- Applies a substitution to the given term.
applySubst :: Subst f -> Term f -> Term f
applySubst sub t@(TermVar v) = fromMaybe t (lookupSubst sub v)
applySubst sub (TermCons c ts) = TermCons c (map (applySubst sub) ts)
--- Applies a substitution to both sides of the given term equation.
applySubstEq :: Subst f -> TermEq f -> TermEq f
applySubstEq sub = both (applySubst sub)
--- Applies a substitution to every term equation in the given list.
applySubstEqs :: Subst f -> TermEqs f -> TermEqs f
applySubstEqs sub = map (applySubstEq sub)
--- Returns a new substitution with only those mappings from the given
--- substitution whose variable is in the given list of variables.
restrictSubst :: Subst f -> [VarIdx] -> Subst f
restrictSubst sub vs =
listToSubst [(v, t) | v <- vs, Just t <- [lookupSubst sub v]]
--- Composes the first substitution `phi` with the second substitution
--- `sigma`. The resulting substitution `sub` fulfills the property
--- `sub(t) = phi(sigma(t))` for a term `t`. Mappings in the first
--- substitution shadow those in the second.
composeSubst :: Subst f -> Subst f -> Subst f
composeSubst phi sigma = Map.union phi (Map.mapWithKey (\_ t -> applySubst phi t) sigma)
|