definition:
|
simpArithExp :: Expr -> Expr
simpArithExp exp = case exp of
Comb FuncCall qt1 [Comb FuncCall qt2 [op, e1], e2]
| qt1 == pre "apply" && qt2 == qt1
-- apply (apply op e1) e2 ==> op [e1,e2]
-> case op of Comb FuncCall qn [] -> replaceBinOp qn e1 e2
Typed (Comb FuncCall qn []) _ -> replaceBinOp qn e1 e2
_ -> exp
Comb FuncCall qt1 [Typed (Comb FuncCall qt2 [op, e1]) _, e2]
| qt1 == pre "apply" && qt2 == qt1
-- apply (apply op e1 :: type) e2 ==> op [e1,e2]
-> case op of Comb FuncCall qn [] -> replaceBinOp qn e1 e2
Typed (Comb FuncCall qn []) _ -> replaceBinOp qn e1 e2
_ -> exp
Comb FuncCall qt1 [op, e1] | qt1 == pre "apply" -- apply op e1 ==> op [e1]
-> case op of Comb FuncCall qn [] -> replaceUnOp qn e1
Typed (Comb FuncCall qn []) _ -> replaceUnOp qn e1
_ -> exp
Comb FuncCall qn [e1,e2] -> replaceBinOp qn e1 e2
Comb FuncCall qn [e1] -> replaceUnOp qn e1
_ -> exp
where
replaceBinOp (mn,fn) e1 e2
| mn == "Prelude" = maybe exp
(\fp -> Comb FuncCall (mn,fp) [e1,e2])
(lookup fn binaryPrimOps)
| otherwise = exp
replaceUnOp (mn,fn) e1
| mn == "Prelude" = maybe exp
(\fp -> Comb FuncCall (mn,fp) [e1])
(lookup fn unaryPrimOps)
| otherwise = exp
|
documentation:
|
--- Simplify applications of primitive operations, i.e.,
--- apply (apply op e1) e2 ==> op [e1,e2]
--- apply (apply op e1 :: t) e2 ==> op [e1,e2]
--- apply op e1 ==> op [e1]
|