CurryInfo: verify-non-fail-2.0.0 / Main

classes:

              
documentation:
-------------------------------------------------------------------------
--- A tool to verify Curry programs w.r.t. failing computations.
--- Thus, a program successfully verified by this tool should never
--- fail at run-time (apart from explicit error) provided that
--- the call types are satisfied when invoking a function.
---
--- @author Michael Hanus
--- @version February 2025
-------------------------------------------------------------------------
name:
Main
operations:
aCallType2Bool addCallTypeRestriction addConditionRestriction addConjunct addEquVarCondition addFailedFunc addMissingCase addSingleCase addVarAnyType addVarExps addVarType addVarTypes anyTypes banner checkPredefinedOp currentFuncDecls enforceNormalForm funcDecls2Usage getBranchState getCallType getCondition getConsInfos getCurrentFuncName getExpandedCondition getExpandedConditionWithConj getFuncType getNonFailConditionOf getToolOptions getVarExps getVarType getVarTypeOf getVarTypes incrIncompleteCases incrNonTrivialCall incrUnsatSMT inferCallTypes inferIOTypes initVerifyState isUnsatisfiable main newFreshVarIndex noVerifyFunctions printIOTypes printIOTypesIfDemanded printIfVerb printVerifyResult printVerifyResults removeVarAnyType restoreBranchState setCallCondition setCondition setCurrentFunc setFreshVarIndex setNewFunCondition setToolError setVarExpTypeOf setVarExps setVarTypes showFunctionInfo showIncompleteBranch showSimpExp showVarExpTypes tryVerifyProg unionFDecls usedFuncsInFunc usedFuncsInRule verifyBranch verifyExpr verifyFunc verifyFuncCall verifyFuncRule verifyMissingBranches verifyModule verifyModuleIfNew verifyNonTrivFuncCall verifyVarExpr
sourcecode:
module Main where

import Control.Monad               ( unless, when )
import Curry.Compiler.Distribution ( curryCompiler )
import Data.Char                   ( toLower )
import Data.IORef
import Data.List
import Data.Maybe                  ( isNothing )
import System.Environment          ( getArgs )

import Debug.Trace ( trace )

-- Imports from dependencies:
import Analysis.Types             ( Analysis, analysisName, startValue )
import Analysis.TermDomain
import Analysis.Values
import Control.Monad.Trans.Class  ( lift )
import Control.Monad.Trans.State  ( StateT, get, put, execStateT )
import qualified Data.Map as Map
import qualified Data.Set as Set
import Data.Time                  ( ClockTime )
import Debug.Profile
import FlatCurry.AddTypes         ( applyTSubst, splitArgTypes )
import FlatCurry.Goodies
import FlatCurry.Names
import FlatCurry.NormalizeLet
import FlatCurry.Print
import FlatCurry.Types
import JSON.Data
import JSON.Pretty                ( ppJSON )
import System.CurryPath           ( runModuleAction )
import System.Directory           ( createDirectoryIfMissing, doesFileExist
                                  , removeDirectory )
import System.FilePath            ( (</>) )
import System.Path                ( fileInPath )
import System.Process             ( exitWith )
import XML

-- Imports from package modules:
import FlatCurry.Build
import FlatCurry.Simplify         ( simpExpr )
import Verify.CallTypes
import Verify.Files
import Verify.Helpers
import Verify.IOTypes
import Verify.NonFailConditions
import Verify.Options
import Verify.ProgInfo
import Verify.Statistics
import Verify.WithSMT

------------------------------------------------------------------------------
banner :: String
banner = unlines [bannerLine, bannerText, bannerLine]
 where
  bannerText = "Curry Non-Failure Verifier (Version of 18/02/25)"
  bannerLine = take (length bannerText) (repeat '=')

main :: IO ()
main = do
  args <- getArgs
  (opts0,progs) <- processOptions banner args
  -- set analysis to top values if unspecified
  let opts = if null (optDomainID opts0)
               then opts0 { optDomainID = analysisName resultValueAnalysisTop }
               else opts0
  when (optDeleteCache opts0) $ deleteVerifyCacheDirectory opts0
  case progs of
    [] -> unless (optDeleteCache opts0) $ do
            printInfoLine "Module name missing!"
            printInfoLine "Try option '--help' for usage information."
            exitWith 1
    ms -> do
      if optDomainID opts == analysisName resultValueAnalysisTop
        then runWith resultValueAnalysisTop opts ms
        else
          if optDomainID opts == analysisName resultValueAnalysis2
            then runWith resultValueAnalysis2 opts ms
            else
              if optDomainID opts == analysisName resultValueAnalysis5
                then runWith resultValueAnalysis5 opts ms
                else error "Unknown analysis domain ID!"
 where
  runWith analysis opts ms = do
    printWhenStatus opts banner
    pistore <- newIORef emptyProgInfo
    astore  <- newIORef (AnaStore [])
    mapM_ (runModuleAction (verifyModuleIfNew analysis pistore astore opts)) ms

--- Verify a single module if necessary, i.e., not previously verified.
verifyModuleIfNew :: TermDomain a => Analysis a -> IORef ProgInfo
                  -> IORef (AnalysisStore a) -> Options -> String -> IO ()
verifyModuleIfNew valueanalysis pistore astore opts0 mname = do
  z3exists <- fileInPath "z3"
  let z3msg = "Option '--nosmt' activated since SMT solver Z3 not found in PATH!"
  opts <- if z3exists || not (optSMT opts0)
            then return opts0
            else do printInfoLine z3msg
                    return opts0 { optSMT = False }
  printWhenStatus opts $ "Processing module '" ++ mname ++ "':"
  flatprog <- getFlatProgFor pistore mname
  outdatedtypes <- typeFilesOutdated opts mname
  if outdatedtypes || optRerun opts || not (null (optFunction opts))
    then verifyModule valueanalysis pistore astore opts mname flatprog
    else do
      let fdecls       = progFuncs flatprog
          visfuncs     = filter (\fn -> optGenerated opts || isCurryID fn)
                                (map funcName
                                     (filter ((== Public) . funcVisibility)
                                             fdecls))
          visfuncset   = Set.fromList visfuncs
          isVisible qf = Set.member qf visfuncset
      let qname  = ("","")                  -- some (unused) QName
          avalue = startValue valueanalysis -- some (unused) abstract type value
      when (optIOTypes opts) $ do
        printWhenStatus opts "Reading in/out types from previous verification..."
        iotypes <- readIOTypes opts mname
        -- note: the `asTypeOf` expression is necessary to convince the type
        -- checker that `iotypes` is parametric over the type variable `a`:
        printIOTypes opts
          (filter (isVisible . fst)
                  (iotypes `asTypeOf` [(qname, valueInOutType avalue)]))
      printWhenStatus opts "Reading call types from previous verification..."
      (ctypes,nfconds) <- readCallCondTypes opts mname
      -- note: the `asTypeOf` expression is necessary to convince the type
      -- checker that `ctype` is parametric over the type variable `a`:
      printVerifyResults opts mname isVisible fdecls
        (ctypes `asTypeOf` [(qname, Just [avalue])]) nfconds
      return ()

--- Verify a single module.
verifyModule :: TermDomain a => Analysis a -> IORef ProgInfo
             -> IORef (AnalysisStore a) -> Options -> String -> Prog -> IO ()
verifyModule valueanalysis pistore astore opts mname flatprog = do
  let orgfdecls     = progFuncs flatprog
      numfdecls     = length orgfdecls
      visfuncs      = map funcName (filter ((== Public) . funcVisibility)
                                          orgfdecls)
      visfuncset    = Set.fromList visfuncs
      isVisible qf  = Set.member qf visfuncset
      showfuncset   = Set.fromList
                        (filter (\fn -> optGenerated opts || isCurryID fn)
                                visfuncs)
      isShowable qf = Set.member qf showfuncset
  imps@(impconsinfos,impacalltypes,impnftypes,impiotypes) <-
    if optImports opts
      then do
        let imports = progImports flatprog
        whenStatus opts $ printInfoString $
          "Reading abstract types of imports: " ++ unwords imports
        -- if only verification results should be shown, use quiet mode and
        -- do not show in/out types for imports:
        let impopts = if optVerb opts <= 1
                        then opts { optVerb = 0, optIOTypes = False }
                        else opts
        readTypesOfModules impopts
                           (verifyModuleIfNew valueanalysis pistore astore)
                           imports
      else return ([],[],[],[])
  if optTime opts then do whenStatus opts $ printInfoString "..."
                          (id $## imps) `seq` printWhenStatus opts "done"
                  else printWhenStatus opts ""
  let modconsinfos = consInfoOfTypeDecls (progTypes flatprog)
      consinfos = modconsinfos ++ impconsinfos
      -- verify function declarations with completed branches:
      fdecls  = map (completeBranchesInFunc consinfos False) orgfdecls
      funusage = funcDecls2Usage mname fdecls
  mtime <- getModuleModTime mname
  -- infer initial abstract call types:
  mboldacalltypes <- readCallTypeFile opts mtime mname
  (acalltypes, numntacalltypes, numpubacalltypes) <- id $!!  
    inferCallTypes opts consinfos isVisible mname mtime flatprog mboldacalltypes
  -- infer in/out types:
  iotypes <- id $!! inferIOTypes opts valueanalysis astore flatprog
  printIOTypesIfDemanded opts isShowable iotypes
  -- read previously inferred non-fail conditions:
  mbnfconds <- readNonFailCondFile opts mtime mname

  vstate <- initVerifyState pistore flatprog consinfos
                            (Map.fromList impacalltypes)
                            (Map.fromList impnftypes)
                            (Map.fromList acalltypes)
                            (Map.fromList (iotypes ++ impiotypes))
                            (maybe [] id mbnfconds) opts
  enforceNormalForm opts "VERIFYSTATE" vstate
  printWhenAll opts $ unlines $
    ("Function usage in module '" ++ mname ++ "':") :
    map (\ (qf, qfs) -> snd qf ++ ": used in " ++
                        unwords (map (snd . funcName) qfs))
        (Map.toList funusage)
  let withverify = optVerify opts &&
                   (null (optFunction opts) ||
                    isNothing mbnfconds || isNothing mboldacalltypes)
  (vnumits, vtime, vst) <-
   if withverify
     then do
       printWhenStatus opts $ "Start verification of '" ++ mname ++ "' (" ++
         show numfdecls ++ " functions):"
       pi1 <- getProcessInfos
       (numits,st) <- tryVerifyProg opts 0 vstate mname funusage fdecls
       pi2 <- getProcessInfos
       printVerifyResult opts st mname isShowable
       let tdiff = maybe 0 id (lookup ElapsedTime pi2) -
                   maybe 0 id (lookup ElapsedTime pi1)
       when (optTime opts && optVerb opts > 0) $ printInfoLine $
         "TOTAL VERIFICATION TIME: " ++ show tdiff ++ " msec"
       return (numits, tdiff, st)
     else return (0, 0, vstate)
  -- print statistics:
  let finalacalltypes   = Map.toList (vstCallTypes vst)
      finalntacalltypes = filter (not . isTotalACallType . snd) finalacalltypes
      ntiotypes         = filter (not . isAnyIOType . snd) iotypes
      numpubntiotypes   = length (filter (isShowable . fst) ntiotypes)
      numvisfuncs       = length visfuncs
      (stattxt,statcsv) = showStatistics opts vtime vnumits isShowable
                            numvisfuncs numfdecls
                            (numpubntiotypes, length ntiotypes)
                            (numpubacalltypes, numntacalltypes)
                            finalntacalltypes
                            (map fst (vstFunConds vst)) (vstStats vst)
  when (optStats opts) $ printInfoString stattxt
  when withverify $ do
    storeTypes opts mname fdecls modconsinfos finalacalltypes
      (filter (isVisible .fst) finalntacalltypes) (vstFunConds vst)
      (filter (isVisible . fst) iotypes)
    storeStatistics opts mname stattxt statcsv
    when (optStoreFuncs opts) $ do
      let nfname = mname ++ ".NONFAIL"
          flname = mname ++ ".FAIL"  
          totalfuncs = filter (isTotalACallType . snd) finalacalltypes
      writeFile nfname
        (unlines (map (\((mn,fn),_) -> mn ++ " " ++ fn) totalfuncs))
      printWhenStatus opts $
        "Non-failing functions stored in '" ++ nfname ++ "'."
      writeFile flname
        (unlines (map (\((mn,fn),_) -> mn ++ " " ++ fn) finalntacalltypes))
      printWhenStatus opts $
        "Possibly failing functions stored in '" ++ flname ++ "'."
  unless (null (optFunction opts)) $ showFunctionInfo opts mname vst
  when (vstError vst) $ exitWith 1

--- Infer the initial (abstract) call types of all functions in a program and
--- return them together with the number of all/public non-trivial call types.
--- The last argument are the already stored old call types, if they are
--- up to date.
inferCallTypes :: TermDomain a => Options -> [(QName,ConsInfo)]
               -> (QName -> Bool)
               -> String -> ClockTime -> Prog -> Maybe [(QName,ACallType a)]
               -> IO ([(QName, ACallType a)], Int, Int)
inferCallTypes opts consinfos isVisible mname mtime flatprog
               mboldacalltypes = do
  oldpubcalltypes <- readPublicCallTypeModule opts consinfos mtime mname
  let fdecls       = progFuncs flatprog
  let calltypes    = unionBy (\x y -> fst x == fst y) oldpubcalltypes
                             (map (callTypeFunc opts consinfos) fdecls)
      ntcalltypes  = filter (not . isTotalCallType . snd) calltypes
      pubcalltypes = filter (isVisible . fst) ntcalltypes
  if optVerb opts > 2
    then printInfoLine $ unlines $ "CONCRETE CALL TYPES OF ALL OPERATIONS:" :
           showFunResults prettyFunCallTypes calltypes
    else when (optVerb opts > 2 || optCallTypes opts) $
      printInfoLine $ unlines $
        ("NON-TRIVIAL CONCRETE CALL TYPES OF " ++
         (if optPublic opts then "PUBLIC" else "ALL") ++ " OPERATIONS:") :
        showFunResults prettyFunCallTypes
         (sortFunResults (if optPublic opts then pubcalltypes else ntcalltypes))

  let pubmodacalltypes = map (funcCallType2AType consinfos) oldpubcalltypes
      acalltypes = unionBy (\x y -> fst x == fst y) pubmodacalltypes
                           (maybe (map (funcCallType2AType consinfos) calltypes)
                                  id
                                  mboldacalltypes)
      ntacalltypes  = filter (not . isTotalACallType . snd) acalltypes
      pubacalltypes = filter (isVisible . fst) ntacalltypes
  if optVerb opts > 2
    then printInfoLine $ unlines $ "ABSTRACT CALL TYPES OF ALL OPERATIONS:" :
           showFunResults prettyFunCallAType acalltypes
    else when (optVerb opts > 2 || optCallTypes opts) $
      printInfoLine $ unlines $
        ("NON-TRIVIAL ABSTRACT CALL TYPES OF " ++
         (if optPublic opts then "PUBLIC" else "ALL") ++ " OPERATIONS:") :
        showFunResults prettyFunCallAType
          (sortFunResults $ if optPublic opts then pubacalltypes
                                              else ntacalltypes)
  return (acalltypes, length ntacalltypes, length pubacalltypes)

--- Infer the in/out types of all functions in a program and return them
--- together with the number of all and public non-trivial in/out types.
inferIOTypes :: TermDomain a => Options -> Analysis a -> IORef (AnalysisStore a)
             -> Prog -> IO [(QName, InOutType a)]
inferIOTypes opts valueanalysis astore flatprog = do
  rvmap <- loadAnalysisWithImports astore valueanalysis opts flatprog
  return $ map (inOutATypeFunc rvmap) (progFuncs flatprog)

--- Infer the in/out types of all functions in a program and return them
--- together with the number of all and public non-trivial in/out types.
printIOTypesIfDemanded :: TermDomain a => Options -> (QName -> Bool)
                       -> [(QName, InOutType a)] -> IO ()
printIOTypesIfDemanded opts isvisible iotypes
  | optVerb opts > 2
  = do printInfoLine "INPUT/OUTPUT TYPES OF ALL OPERATIONS:"
       printIOTypes opts iotypes
  | not (optIOTypes opts)
  = return ()
  | optFormat opts /= FormatText
  = do printWhenStatus opts "INPUT/OUTPUT TYPES OF ALL PUBLIC OPERATIONS:"
       printIOTypes opts 
         (filter (\(qf,_) -> not (optPublic opts) || isvisible qf) iotypes)
  | otherwise
  = do let ntiotypes    = filter (not . isAnyIOType . snd) iotypes
           pubntiotypes = filter (isvisible . fst) ntiotypes
       printInfoLine $ "NON-TRIVIAL INPUT/OUTPUT TYPES OF " ++
          (if optPublic opts then "PUBLIC" else "ALL") ++ " OPERATIONS:"
       printIOTypes opts (if optPublic opts then pubntiotypes else ntiotypes)

printIOTypes :: TermDomain a => Options -> [(QName, InOutType a)] -> IO ()
printIOTypes opts iotypes
  | optFormat opts == FormatJSON
  = putStrLn $ ppJSON $ JArray $ map ioType2JSON (sortFunResults iotypes)
  | optFormat opts == FormatXML
  = putStrLn $ showXmlDoc $ xml "results" $
      map ioType2XML (sortFunResults iotypes)
  | otherwise
  = printInfoLine $ unlines $ showFunResults showIOT (sortFunResults iotypes)
 where
  ioType2JSON ((mn,fn),fct) =
    JObject [("module", JString mn),
             ("name"  , JString fn),
             ("result", JString (show fct))]
             
  ioType2XML ((mn,fn),fct) =
    xml "operation" [xml "module" [xtxt mn],
                     xml "name"   [xtxt fn],
                     xml "result" [xtxt (show fct)]]

-- Shows the call and in/out type of a given function defined in the module.
showFunctionInfo :: TermDomain a => Options -> String -> VerifyState a -> IO ()
showFunctionInfo opts mname vst = do
  let f = optFunction opts
      qf = (mname, f)
  fdecls <- currentFuncDecls vst
  if qf `notElem` map funcName fdecls
    then printInfoLine $ "Function '" ++ snd qf ++ "' not defined!"
    else do
      let iot   = maybe (trivialInOutType 0) id (Map.lookup qf (vstIOTypes vst))
          ctype = maybe (Just [anyType]) id (Map.lookup qf (vstCallTypes vst))
      printInfoLine $ "Function '" ++ f ++ "':"
      printInfoLine $ "In/out type: " ++ showIOT iot
      printInfoLine $ "Call type  : " ++ prettyFunCallAType ctype
      maybe (return ())
            (\nfc -> printInfoLine $ showConditions fdecls [(qf,nfc)])
            (lookup qf (vstFunConds vst))

-- Try to verify a module, possibly in several iterations.
-- The second argument is the number of already performed iterations,
-- the first component of the result is the total number of iterations.
tryVerifyProg :: TermDomain a => Options -> Int -> VerifyState a -> String
              -> Map.Map QName [FuncDecl] -> [FuncDecl]
              -> IO (Int,VerifyState a)
tryVerifyProg opts numits vstate mname funusage fdecls = do
  st <- execStateT (mapM_ verifyFunc fdecls) vstate
  -- remove NewFailed information about unchanged operations
  -- (usually, these are failed operations with changed conditions)
  let newfailures = filter (\(qf,ct) -> maybe True (\fct -> ct /= fct)
                                          (Map.lookup qf (vstCallTypes st)))
                           (vstNewFailed st)
  unless (null newfailures || optVerb opts < 2) $ printFailures st
  unless (null newfailures) $ printWhenStatus opts $ unlines $
    "Operations with refined call types (used in future analyses):" :
    showFunResults prettyFunCallAType (reverse newfailures)
  let newcts = Map.union (Map.fromList newfailures) (vstCallTypes st)
  enforceNormalForm opts "NEWCALLTYPES" newcts
  let (failconds,refineconds) =
         partition (\(qf,_) -> qf `elem` (map fst (vstFunConds st)))
                   (vstNewFunConds st)
      newfailconds = filter (\(qf,_) -> (qf,nfcFalse) `notElem` vstFunConds st)
                            failconds
      -- Condition for next iteration: set already existing conditions to
      -- `False` to avoid infinite refinements
      nextfunconds = (unionBy (\x y -> fst x == fst y)
                              (map (\(qf,_) -> (qf, nfcFalse)) newfailconds)
                              (vstFunConds st)) ++ refineconds
      newrefineconds = newfailconds ++ refineconds
  --fdecls <- currentFuncDecls st
  unless (null newrefineconds) $ printWhenStatus opts $
    "Operations with refined call conditions (used in future analyses):\n" ++
    showConditions fdecls newrefineconds
  let st' = st { vstCallTypes = newcts, vstNewFailed = []
               , vstFunConds = nextfunconds, vstNewFunConds = [] }
  if null newfailures && null newrefineconds
    then do printFailures st'
            -- remove always failing conditions (since the call types are
            -- always failing for such functions):
            let st'' = st' { vstFunConds =
                               filter ((/= nfcFalse) . snd) nextfunconds }
            return (numits + 1, st'')
    else do
      let -- functions with refined call types:
          rfuns = map fst (filter (not . isFailACallType . snd) newfailures)
          newfdecls =
            foldr unionFDecls
              (filter (\fd -> funcName fd `elem` rfuns) fdecls)
              (map (\qf -> maybe [] id (Map.lookup qf funusage))
                   (union (map fst newfailures) (map fst newrefineconds)))
      printWhenStatus opts $ "Repeat verification with new call types..." ++
        "(" ++ show (length newfdecls) ++ " functions)"
      --printInfoLine $ unlines $
      --  showFunResults prettyFunCallAType (sortFunResults $ vstCallTypes st')
      tryVerifyProg opts (numits + 1) st' mname funusage newfdecls
 where
  failLine = take 78 (repeat '!')
  failComment = failLine ++ "\nPROGRAM CONTAINS POSSIBLY FAILING "

  printFailures st = whenStatus opts $ do
    unless (null (vstFailedFuncs st)) $
      printInfoLine $ failComment ++ "FUNCTION CALLS:\n" ++
         unlines (map (\ (qf,_,e) -> "Function '" ++ snd qf ++
                                     "': call '" ++ showExp e ++ "'")
                      (reverse (vstFailedFuncs st)) ++ [failLine])
    unless (null (vstPartialBranches st)) $
      printInfoLine $ failComment ++ "FUNCTIONS:\n" ++
         unlines
           (map (\ (qf,_,e,cs) -> showIncompleteBranch qf e cs)
                (reverse (vstPartialBranches st)) ++ [failLine])

--- Prints a message about the result of the module verification.
printVerifyResult :: TermDomain a => Options -> VerifyState a -> String
                  -> (QName -> Bool) -> IO ()
printVerifyResult opts vst mname isvisible = do
  fdecls <- currentFuncDecls vst
  printVerifyResults opts mname isvisible fdecls
                     (Map.toList (vstCallTypes vst)) (vstFunConds vst)

------------------------------------------------------------------------------
-- Print the verification results in the required format.
printVerifyResults :: TermDomain a => Options -> String -> (QName -> Bool)
                   -> [FuncDecl] -> [(QName,ACallType a)]
                   -> [(QName,NonFailCond)] -> IO ()
printVerifyResults opts mname isvisible fdecls ctypes nfconds
  | optVerb opts == 0
  = return ()
  | optFormat opts == FormatJSON
  = putStrLn $ ppJSON $ JArray $
      map callAType2JSON (sortFunResults (filter (showFun . fst) ctypes))
  | optFormat opts == FormatXML
  = putStrLn $ showXmlDoc $ xml "results" $
      map callAType2XML (sortFunResults (filter (showFun . fst) ctypes))
  | otherwise
  = do
    putStr $ "MODULE '" ++ mname ++ "' VERIFIED"
    let calltypes = filter (\(qf,ct) -> not (isTotalACallType ct) && showFun qf)
                           ctypes
        funconds = filter (showFun . fst) nfconds
    if null calltypes
      then putStrLn "\n"
      else putStrLn $ unlines $ " W.R.T. NON-TRIVIAL ABSTRACT CALL TYPES:"
             : showFunResults prettyFunCallAType
                 (sortFunResults (filter ((`notElem` (map fst funconds)) . fst)
                                         calltypes))
    unless (null funconds) $
      putStrLn $ "NON-FAIL CONDITIONS FOR OTHERWISE FAILING FUNCTIONS:\n" ++
                 showConditions fdecls (sortFunResults funconds)
 where
  showFun qf = not (optPublic opts) || isvisible qf

  callAType2JSON (qf@(mn,fn),fct) =
    JObject [("module", JString mn),
             ("name"  , JString fn),
             ("result", JString (showCallATypeOrNonFailCond qf fct))]
             
  callAType2XML (qf@(mn,fn),fct) =
    xml "operation" [xml "module" [xtxt mn],
                     xml "name"   [xtxt fn],
                     xml "result" [xtxt (showCallATypeOrNonFailCond qf fct)]]
             
  showCallATypeOrNonFailCond qf ct =
    maybe ("0:" ++ show ct)
          (\nfc -> "1:" ++ show (snd (genNonFailFunction fdecls (qf,nfc))))
          (lookup qf nfconds)

-- Shows a message about an incomplete branch.
-- If the third argument is the empty list, it is a literal branch.
showIncompleteBranch :: QName -> Expr -> [QName] -> String
showIncompleteBranch qf e cs@(_:_) =
  "Function '" ++ snd qf ++ "': constructor" ++
  (if length cs > 1 then "s" else "") ++ " '" ++
  unwords (map snd cs) ++ "' " ++
  (if length cs > 1 then "are" else "is") ++ " not covered in:\n" ++
  showExp e
showIncompleteBranch qf e [] =
  "Function '" ++ snd qf ++ "': the case on literals might be incomplete:\n" ++
  showExp e

------------------------------------------------------------------------------
-- The state of the transformation process contains
-- * the list of all function declarations of the current module
-- * the current function to be analyzed (name, arity, rule arguments)
-- * a list of all constructors grouped by types
-- * a fresh variable index
-- * a list of all variables and their bound expressions
-- * a list of all variables and their input/output types
-- * the call condition of the current branch expressed as a (Boolean) FlatCurry
--   expression which contains a "hole" to extend it with further conjunctions
-- * the call types of all imported operations
-- * the call types of operations of the current module
-- * the input/output types of all operations
-- * the list of failed function calls
-- * the list of incomplete case expressions
-- * the list of functions marked as failing in this iteration
-- * some statistics
-- * the tool options
-- * a Boolean flag which is `True` if some error occurred
-- It is parameterized over the abstract term domain.
data VerifyState a = VerifyState
  { vstModules     :: IORef ProgInfo    -- all infos about loaded modules
  , vstCurrModule  :: String            -- name of the current module
  , vstCurrFunc    :: (QName,Int,[Int]) -- name/arity/args of current function
  , vstConsInfos   :: [(QName,ConsInfo)]-- infos about all constructors
  , vstFreshVar    :: Int               -- fresh variable index in a rule
  , vstVarExp      :: [(Int,TypeExpr,Expr)] -- map variable to its type and
                                            -- subexpression
  , vstVarTypes    :: VarTypesMap a     -- map variable to its abstract types
  , vstCondition   :: Expr -> Expr      -- current branch condition (with hole)
  , vstImpCallTypes:: Map.Map QName (ACallType a) -- call types of imports
  , vstCallTypes   :: Map.Map QName (ACallType a) -- call types of module
  , vstIOTypes     :: Map.Map QName (InOutType a) -- in/out type for all funcs
  , vstFailedFuncs :: [(QName,Int,Expr)]   -- functions with illegal calls
  , vstPartialBranches :: [(QName,Int,Expr,[QName])] -- incomplete branches
  , vstNewFailed   :: [(QName,ACallType a)] -- new failed function call types
  , vstImpFunConds :: Map.Map QName NonFailCond -- call conditions of imports
  , vstFunConds    :: [(QName,NonFailCond)] -- call conditions of functions
  , vstNewFunConds :: [(QName,NonFailCond)] -- functions with new call conds
  , vstStats       :: (Int,Int,Int)         -- number of: non-trivial calls /
                                            -- incomplete cases /
                                            -- SMT-checked non-trivial calls
  , vstToolOpts    :: Options
  , vstError       :: Bool
  }

--- Initializes the verification state.
initVerifyState :: TermDomain a => IORef ProgInfo -> Prog -> [(QName,ConsInfo)]
                -> Map.Map QName (ACallType a) -> Map.Map QName NonFailCond
                -> Map.Map QName (ACallType a)
                -> Map.Map QName (InOutType a)
                -> [(QName,NonFailCond)] -> Options
                -> IO (VerifyState a)
initVerifyState pistore flatprog consinfos impacalltypes impfconds acalltypes
                iotypes nfconds opts = do
  unless (null nonfailconds) $ printWhenDetails opts $
    "INITIAL NON-FAIL CONDITIONS:\n" ++
    showConditions (progFuncs flatprog) nonfailconds
  return $ VerifyState pistore (progName flatprog) (("",""),0,[]) consinfos 0
                       [] [] id impacalltypes nfacalltypes iotypes [] [] []
                       impfconds nonfailconds [] (0,0,0) opts False
 where
  nonfailconds = unionBy (\x y -> fst x == fst y) nfconds
                         (nonFailCondsOfModule flatprog)

  -- set the call types of operations with non-fail conditions to "failed"
  nfacalltypes = Map.insertList
                   (map (\(qf,_) -> (qf, failACallType)) nonfailconds)
                   acalltypes

-- The type of the state monad contains the verification state.
type VerifyStateM atype a = StateT (VerifyState atype) IO a

-- Sets the name and arity of the current function in the state.
setToolError :: TermDomain a => VerifyStateM a ()
setToolError = do
  st <- get
  put $ st { vstError = True }

-- Gets the function declarations of the current module.
currentFuncDecls :: TermDomain a => VerifyState a -> IO [FuncDecl]
currentFuncDecls st = do
   prog <- getFlatProgFor (vstModules st) (vstCurrModule st)
   return $ progFuncs prog

-- Sets the name and arity of the current function in the state.
setCurrentFunc :: TermDomain a => QName -> Int -> [Int] -> VerifyStateM a ()
setCurrentFunc qf ar vs = do
  st <- get
  put $ st { vstCurrFunc = (qf,ar,vs) }

-- Gets the name of the current function in the state.
getCurrentFuncName :: TermDomain a => VerifyStateM a QName
getCurrentFuncName = do
  st <- get
  return $ let (qf,_,_) = vstCurrFunc st in qf

-- Gets information about all constructors.
getConsInfos :: TermDomain a => VerifyStateM a [(QName,ConsInfo)]
getConsInfos = get >>= return . vstConsInfos

-- Sets the fresh variable index in the state.
setFreshVarIndex :: TermDomain a => Int -> VerifyStateM a ()
setFreshVarIndex fvi = do
  st <- get
  put $ st { vstFreshVar = fvi }

-- Gets a new fresh variable index.
newFreshVarIndex :: TermDomain a => VerifyStateM a Int
newFreshVarIndex = do
  v <- fmap vstFreshVar get
  setFreshVarIndex (v + 1)
  return v

-- Adds a new (more restricted) inferred call type for a function
-- which will be used in the next iteration. If there is already
-- a more restricted call type, they will be joined.
addCallTypeRestriction :: TermDomain a => QName -> ACallType a -> VerifyStateM a ()
addCallTypeRestriction qf ctype = do
  st <- get
  maybe (put $ st { vstNewFailed = (qf,ctype) : (vstNewFailed st) } )
        (\ct -> do
           let newct = joinACallType ct ctype
           put $ st { vstNewFailed = unionBy (\x y -> fst x == fst y)
                                             [(qf,newct)] (vstNewFailed st) })
        (lookup qf (vstNewFailed st))

-- Adds a new condition (provided as the second argument as a FlatCurry
-- expression) to the call condition for the current function (first argument)
-- so that it will be used in the next iteration.
-- If there is already a new refined call condition, they will be combined.
-- If the condition is `True`, i.e., the call condition cannot be refined,
-- then the current branch condition will be negated and added
-- so that the current branch is not reachable.
-- Furthermore, the call type of the current function is set to
-- always failing.
addConditionRestriction :: TermDomain a => QName -> Expr -> VerifyStateM a ()
addConditionRestriction qf cond = do
  st <- get
  when (optSMT (vstToolOpts st)) $ do
    let (_,_,vs) = vstCurrFunc st
    oldcalltype <- getCallType qf 0
    let totaloldct = isTotalACallType oldcalltype
        -- express oldcalltype as a condition to be added to `cond`:
        oldcalltypecond = aCallType2Bool (vstConsInfos st) vs oldcalltype
    branchcond <- getExpandedCondition
    newbranchcond <- getExpandedConditionWithConj cond
    let newcond = fcAnd oldcalltypecond
                    (if cond == fcTrue
                       then fcNot branchcond
                       else -- current branch condition implies new condition:
                            fcOr (fcNot branchcond) newbranchcond)
    printIfVerb 2 $ "New call condition for function '" ++ snd qf ++ "': " ++
                    showSimpExp newcond ++
                 (if totaloldct then "" else " (due to non-trivial call type)")
    printIfVerb 3 $ "Check satisfiability of new call condition..."
    unsat <- isUnsatisfiable newcond
    when unsat $ printIfVerb 2 $ "...is unsatisfiable"
    vartypes <- fmap (map (\(v,t,_) -> (v,t))) getVarExps
    setNewFunCondition qf (if unsat then nfcFalse
                                    else genNonFailCond vartypes newcond)
  addCallTypeRestriction qf failACallType

--- Sets a new non-fail condition for a function.
--- If the function has already a new non-fail condition, they will be combined.
setNewFunCondition :: TermDomain a => QName -> NonFailCond -> VerifyStateM a ()
setNewFunCondition qf newcond = do
  st <- get
  maybe (put $ st { vstNewFunConds = (qf,newcond) : (vstNewFunConds st) } )
        (\prevcond -> do
          let newct = combineNonFailConds prevcond newcond
          put $ st { vstNewFunConds = unionBy (\x y -> fst x == fst y)
                                        [(qf,newct)] (vstNewFunConds st) })
        (lookup qf (vstNewFunConds st))

--- Tries to generate a Boolean condition from an abstract call type,
--- if possible.
aCallType2Bool :: TermDomain a => [(QName,ConsInfo)] -> [Int] -> ACallType a -> Expr
aCallType2Bool _       _  Nothing      = fcFalse
aCallType2Bool consinfos vs (Just argts) =
  if all isAnyType argts
    then fcTrue
    else fcAnds (map act2cond (zip vs argts))
 where
  act2cond (v,at) = fcAnds $
    map (\ct -> if all isAnyType (argTypesOfCons ct (arityOfCons consinfos ct) at)
                  then transTester consinfos ct (Var v)
                  else fcFalse )
        (consOfType at)


-- Adds a failed function call (represented by the FlatCurry expression)
-- to the current function. If the second argument is `Just vts`, then
-- this call is not failed provided that it can be ensured that the
-- variable types `vts` hold. This information is used to refine the
-- call type of the current function, if possible.
-- Similarly, this call is not failed provided that the third argument
-- (a condition represented as a FlatCurry expression) is not failed so that
-- this condition is also used to refine the call condition of the current
-- function.
addFailedFunc :: TermDomain a => Expr -> Maybe [(Int,a)] -> Expr -> VerifyStateM a ()
addFailedFunc exp mbvts cond = do
  st <- get
  let (qf,ar,args) = vstCurrFunc st
  put $ st { vstFailedFuncs = union [(qf,ar,exp)] (vstFailedFuncs st) }
  maybe (addConditionRestriction qf cond)
        (\vts ->
           if any ((`elem` args) . fst) vts
             then do
               oldct <- getCallType qf ar
               let ncts  = map (\v -> maybe anyType id (lookup v vts)) args
                   newct = maybe Nothing
                                 (\oldcts -> Just (map (uncurry joinType)
                                                       (zip oldcts ncts)))
                                 oldct
               if oldct == newct
                 then noRefinementFor qf
                 else do
                   printIfVerb 2 $ "TRY TO REFINE FUNCTION CALL TYPE OF " ++
                                   snd qf ++ " TO: " ++ prettyFunCallAType newct
               addCallTypeRestriction qf newct
             else noRefinementFor qf
        )
        mbvts
 where
  noRefinementFor qf = do
    printIfVerb 2 $ "CANNOT REFINE ABSTRACT CALL TYPE OF FUNCTION " ++ snd qf
    addConditionRestriction qf cond

-- Adds an info about cases with missing branches in the current function.
addMissingCase :: TermDomain a => Expr -> [QName] -> VerifyStateM a ()
addMissingCase exp qcs = do
  st <- get
  let (qf,ar,_) = vstCurrFunc st
  put $
    st { vstPartialBranches = union [(qf,ar,exp,qcs)] (vstPartialBranches st) }
  addCallTypeRestriction qf failACallType

-- Sets the types and expressions for variables.
getVarExps :: TermDomain a => VerifyStateM a [(Int,TypeExpr,Expr)]
getVarExps = fmap vstVarExp get

-- Sets the types and expressions for variables.
setVarExps :: TermDomain a => [(Int,TypeExpr,Expr)] -> VerifyStateM a ()
setVarExps varexps = do
  st <- get
  put $ st { vstVarExp = varexps }

-- Sets the FlatCurry type of a given variable.
-- This is used to specialize numeric types during verification
-- of predefined numeric operations.
setVarExpTypeOf :: TermDomain a => Int -> TypeExpr -> VerifyStateM a ()
setVarExpTypeOf var te = do
  st <- get
  put $ st { vstVarExp = map (\(v,t,e) -> if v==var then (v,te,e) else (v,t,e))
                             (vstVarExp st) }

-- Adds types and expressions for new variables.
addVarExps :: TermDomain a => [(Int,TypeExpr,Expr)] -> VerifyStateM a ()
addVarExps varexps = do
  st <- get
  put $ st { vstVarExp = vstVarExp st ++ varexps }

-- Get all currently stored variable types.
getVarTypes :: TermDomain a => VerifyStateM a (VarTypesMap a)
getVarTypes = fmap vstVarTypes get

-- Gets the currently stored types for a given variable.
getVarTypeOf :: TermDomain a => Int -> VerifyStateM a (VarTypes a)
getVarTypeOf v = do
  st <- get
  return $ maybe [] id (lookup v (vstVarTypes st))

-- Sets all variable types.
setVarTypes :: TermDomain a => VarTypesMap a -> VerifyStateM a ()
setVarTypes vartypes = do
  st <- get
  put $ st { vstVarTypes = vartypes }

-- Adds a new variable type to the current set of variable types.
-- It could be an alternative type for an already existent variable or
-- a type for a new variable.
addVarType :: TermDomain a => Int -> VarTypes a -> VerifyStateM a ()
addVarType v vts = do
  st <- get
  put $ st { vstVarTypes = addVarType2Map v vts (vstVarTypes st) }

-- Adding multiple variable types:
addVarTypes :: TermDomain a => VarTypesMap a -> VerifyStateM a ()
addVarTypes vtsmap = do
  st <- get
  put $ st { vstVarTypes = concVarTypesMap (vstVarTypes st) vtsmap }

-- Adds a new variable `Any` type to the current set of variable types.
addVarAnyType :: TermDomain a => Int -> VerifyStateM a ()
addVarAnyType v = addVarType v (ioVarType anyType)

-- Removes an `Any` type for a given variable from the current
-- set of variable types.
-- Used to remove the initial `Any` types in let bindings.
removeVarAnyType :: TermDomain a => Int -> VerifyStateM a ()
removeVarAnyType v = do
  st <- get
  let vtsmap = vstVarTypes st
      vtsmap' = maybe vtsmap
                      (\vts -> setVarTypeInMap v
                                               (filter (not . isAnyIOType) vts)
                                               vtsmap)
                      (lookup v vtsmap)
  put $ st { vstVarTypes = vtsmap' }
 where
  isAnyIOType (vt,vs) =
    case (vt,vs) of (IOT [([], at)], []) -> isAnyType at
                    _                    -> False

-- Gets current branch condition in internal representation.
getCondition :: TermDomain a => VerifyStateM a (Expr -> Expr)
getCondition = fmap vstCondition get

-- Gets the expanded current branch condition.
getExpandedCondition :: TermDomain a => VerifyStateM a Expr
getExpandedCondition = do
  st <- get
  return $ expandExpr (vstVarExp st) (vstCondition st fcTrue)

-- Gets the expanded current branch condition where a conjunct has been added.
getExpandedConditionWithConj :: TermDomain a => Expr -> VerifyStateM a Expr
getExpandedConditionWithConj conj = do
  st <- get
  return $ expandExpr (vstVarExp st) (vstCondition st conj)

-- Sets the current branch condition in internal representation.
setCondition :: TermDomain a => (Expr -> Expr) -> VerifyStateM a ()
setCondition expf = do
  st <- get
  put $ st { vstCondition = expf }

-- Sets the initial condition for a function call.
setCallCondition :: TermDomain a => Expr -> VerifyStateM a ()
setCallCondition exp = do
  st <- get
  put $ st { vstCondition = fcAnd exp }

-- Adds a conjunct to the current condition.
addConjunct :: TermDomain a => Expr -> VerifyStateM a ()
addConjunct exp = do
  st <- get
  put $ st { vstCondition = \c -> (vstCondition st) (fcAnd exp c) }

-- Adds to the current condition an equality between a variable and
-- a constructor applied to a list of fresh pattern variables.
-- This condition is expressed as a case expression where
-- the hole of the current condition is in the branch for the given
-- constructor and all alternative branches return a `False` value.
addSingleCase :: TermDomain a => Int -> QName -> [Int] -> VerifyStateM a ()
addSingleCase casevar qc branchvars = do
  st <- get
  let siblings    = siblingsOfCons (vstConsInfos st) qc
      catchbranch = if null siblings then []
                                     else [Branch (Pattern anonCons []) fcFalse]
  put $ st { vstCondition =
               \c -> (vstCondition st)
                       (Case Rigid (Var casevar)
                          ([Branch (Pattern qc branchvars) c] ++ catchbranch)) }

-- Adds an equality between a variable and an expression as a conjunct
-- to the current condition.
addEquVarCondition :: TermDomain a => Int -> Expr -> VerifyStateM a ()
addEquVarCondition var exp = do
  let conj = if exp == fcTrue
               then Var var
               else if exp == fcFalse
                      then fcNot (Var var)
                      else Comb FuncCall (pre "==") [Var var, exp]
                           -- note: the Eq class dictioniary is missing...
  addConjunct conj

-- Gets the possible non-fail condition of a given operation.
getNonFailConditionOf :: TermDomain a => QName -> VerifyStateM a (Maybe NonFailCond)
getNonFailConditionOf qf = do
  st <- get
  return $ maybe (Map.lookup qf (vstImpFunConds st))
                 Just
                 (lookup qf (vstFunConds st))

-- Gets the abstract call type of a given operation.
-- The trivial abstract call type is returned for encapsulated search operations.
getCallType :: TermDomain a => QName -> Int -> VerifyStateM a (ACallType a)
getCallType qf ar
  | isEncSearchOp qf || isSetFunOp qf
  = return trivialACallType
  | otherwise
  = do
  st <- get
  return $
    if qf == pre "error" && optError (vstToolOpts st)
      then failACallType
      else maybe (maybe (trace ("Warning: call type of operation " ++
                                show qf ++ " not found!") trivialACallType)
                        id
                        (Map.lookup qf (vstImpCallTypes st)))
                 id
                 (Map.lookup qf (vstCallTypes st))
 where
  trivialACallType = Just $ take ar (repeat anyType)

-- Gets the in/out type for an operation of a given arity.
-- If the operation is not found, returns a general type.
-- The trivial in/out type is returned for encapsulated search operations.
getFuncType :: TermDomain a => QName -> Int -> VerifyStateM a (InOutType a)
getFuncType qf ar
  | isEncSearchOp qf || isSetFunOp qf
  = return $ trivialInOutType ar
  | otherwise
  = do st <- get
       maybe (do lift $ printInfoLine $
                   "WARNING: in/out type of '" ++ show qf ++ "' not found!"
                 return $ trivialInOutType ar)
             return
             (Map.lookup qf (vstIOTypes st))

-- Increment number of checks of non-trivial function calls.
incrNonTrivialCall :: TermDomain a => VerifyStateM a ()
incrNonTrivialCall = do
  st <- get
  put $ st { vstStats = (\ (f,c,s) -> (f+1,c,s)) (vstStats st) }

-- Increment number of checks of incomplete case expressions.
incrIncompleteCases :: TermDomain a => VerifyStateM a ()
incrIncompleteCases = do
  st <- get
  put $ st { vstStats = (\ (f,c,s) -> (f,c+1,s)) (vstStats st) }

-- Increment number of checks of unsatisfiability with SMT.
incrUnsatSMT :: TermDomain a => VerifyStateM a ()
incrUnsatSMT = do
  st <- get
  put $ st { vstStats = (\ (f,c,s) -> (f,c,s+1)) (vstStats st) }

-- Gets the tool options from the current state.
getToolOptions :: TermDomain a => VerifyStateM a Options
getToolOptions = get >>= return . vstToolOpts

--- Prints a string with `printInfoString` if the verbosity is at least as
--- the given one.
printIfVerb :: TermDomain a => Int -> String -> VerifyStateM a ()
printIfVerb v s = do
  opts <- getToolOptions
  when (optVerb opts >= v) $ lift $ printInfoString s

------------------------------------------------------------------------------

-- Verify a FlatCurry function declaration.
verifyFunc :: TermDomain a => FuncDecl -> VerifyStateM a ()
verifyFunc (Func qf ar _ ftype rule) = case rule of
  Rule vs exp -> unless noVerify $ do
                   setCurrentFunc qf ar vs
                   verifyFuncRule vs ftype (normalizeLet exp)
  External _  -> return ()
 where
  noVerify = qf `elem` noVerifyFunctions ||
             nonfailSuffix `isSuffixOf` snd qf

-- A list of operations that do not need to be verified.
-- These are operations that are non-failing but this property
-- cannot be ensured by the current tool.
noVerifyFunctions :: [QName]
noVerifyFunctions =
  [ pre "aValueChar" -- is non-failing if minBound <= maxBound, which is True
  ]

verifyFuncRule :: TermDomain a => [Int] -> TypeExpr -> Expr -> VerifyStateM a ()
verifyFuncRule vs ftype exp = do
  setFreshVarIndex (maximum (0 : vs ++ allVars exp) + 1)
  setVarExps  (map (\(v,te) -> (v, te, Var v)) (funcType2TypedVars vs ftype))
  qf <- getCurrentFuncName
  mbnfcond <- getNonFailConditionOf qf
  maybe
    (setCallCondition fcTrue)
    (\(nfcvars,fcond) -> do
      let freenfcargs = filter ((`notElem` vs) . fst) nfcvars
      newfvars <- mapM (\_ -> newFreshVarIndex) freenfcargs
      -- add renamed free variables of condition to the current set of variables
      addVarExps (map (\(v,(_,t)) -> (v,t,Var v)) (zip newfvars freenfcargs))
      -- rename free variables before adding the condition:
      setCallCondition $ expandExpr (map (\(nv,(v,t)) -> (v,t,Var nv))
                                         (zip newfvars freenfcargs))  fcond)
     mbnfcond
  printIfVerb 3 $ "CHECKING FUNCTION " ++ snd qf
  ctype    <- getCallType qf (length vs)
  rhstypes <- mapM (\f -> getCallType f 0) (funcsInExpr exp)
  if all isTotalACallType (ctype:rhstypes)
    then printIfVerb 3 $ "not checked since trivial"
    else maybe (maybe
                  (printIfVerb 3 "not checked since marked as always failing")
                  (\_ -> do
                    setVarTypes (map (\v -> (v, [(IOT [([], anyType)], [])]))
                                     vs)
                    showVarExpTypes
                    verifyExpr True exp
                    return () )
                  mbnfcond)
               (\atargs -> do
                  setVarTypes (map (\(v,at) -> (v, [(IOT [([], at)], [])]))
                                   (zip vs atargs))
                  showVarExpTypes
                  verifyExpr True exp
                  return ())
               ctype
  printIfVerb 3 $ take 70 (repeat '-')

-- Shows the current variable expressions and types if verbosity > 2.
showVarExpTypes :: TermDomain a => VerifyStateM a ()
showVarExpTypes = do
  qf <- getCurrentFuncName
  opts <- getToolOptions
  when (optVerb opts > 3) $ do
    st <- get
    lift $ printInfoString $
      "Current set of variables in function " ++ snd qf ++
      ":\nVariable bindings:\n" ++
      unlines (map (\ (v,te,e) -> showBindExp v e ++
                     if te == unknownType then "" else " :: " ++ showTypeExp te)
                   (vstVarExp st))
    vartypes <- getVarTypes
    lift $ printInfoString $ "Variable types\n" ++ showVarTypes vartypes
    cond <- getExpandedCondition
    lift $ printInfoLine $ "Current condition: " ++ showSimpExp cond

-- Verify an expression (if the first argument is `True`) and,
-- if the expression is not a variable, create a fresh
-- variable and a binding for this variable.
-- The variable which identifies the expression is returned.
verifyExpr :: TermDomain a => Bool -> Expr -> VerifyStateM a Int
verifyExpr verifyexp exp = case exp of
  Var v -> do iots <- if verifyexp then verifyVarExpr v exp
                                   else return [(v, ioVarType anyType)]
              addVarTypes iots
              return v
  _     -> do v <- newFreshVarIndex
              addVarExps [(v, unknownType, exp)]
              iots <- if verifyexp then verifyVarExpr v exp
                                   else return [(v, ioVarType anyType)]
              addVarTypes iots
              return v

-- Verify an expression identified by variable (first argument).
-- The in/out variable types collected for the variable are returned.
verifyVarExpr :: TermDomain a => Int -> Expr -> VerifyStateM a (VarTypesMap a)
verifyVarExpr ve exp = case exp of
  Var v         -> if v == ve
                     then return []
                     else do
                       --lift $ printInfoLine $
                       --  "Expression with different vars: " ++ show (v,ve)
                       --showVarExpTypes
                       vtypes <- getVarTypeOf v
                       -- TODO: improve by handling equality constraint v==ve
                       -- instead of copying the current types for v to ve:
                       return $ [(ve, vtypes)]
  Lit l         -> return [(ve, [(IOT [([], aLit l)], [])])]
  Comb ct qf es -> checkPredefinedOp exp $ do
    vs <- if isEncSearchOp qf
            then -- for encapsulated search, failures in arguments are hidden
                 mapM (verifyExpr False) es
            else if isSetFunOp qf
                   then -- for a set function, the function argument is hidden
                        mapM (\ (i,e) -> verifyExpr (i>0) e)
                             (zip [0..] es)
                   else mapM (verifyExpr True) es
    case ct of
      FuncCall -> do verifyFuncCall exp qf vs
                     ftype <- getFuncType qf (length vs)
                     return [(ve, [(ftype, vs)])]
      FuncPartCall n -> -- note: also partial calls are considered as constr.
                  do ctype <- getCallType qf (n + length es)
                     unless (isTotalACallType ctype) $ do
                       printIfVerb 3 $ "UNSATISFIED ABSTRACT CALL TYPE: " ++
                         "partial application of non-total function\n"
                       addFailedFunc exp Nothing fcTrue
                     -- note: also partial calls are considered as constructors
                     returnConsIOType qf vs ve
      _        -> returnConsIOType qf vs ve
  Let bs e      -> do addVarExps (map (\(v,be) -> (v, unknownType, be)) bs)
                      mapM_ (addVarAnyType . fst) bs
                      iotss <- mapM (\ (v,be) -> verifyVarExpr v be) bs
                      -- remove initially set anyType's for the bound vars:
                      mapM_ (removeVarAnyType . fst) bs
                      addVarTypes (concat iotss)
                      mapM_ (addAnyTypeIfUnknown . fst) bs
                      verifyVarExpr ve e
  Free vs e     -> do addVarExps (map (\v -> (v, unknownType, Var v)) vs)
                      mapM_ addVarAnyType vs
                      verifyVarExpr ve e
  Or e1 e2      -> do iots1 <- verifyVarExpr ve e1 -- 
                      iots2 <- verifyVarExpr ve e2
                      return (concVarTypesMap iots1 iots2)
  Case _ ce bs  -> do cv <- verifyExpr True ce
                      verifyMissingBranches exp cv bs
                      iotss <- mapM (verifyBranch cv ve) bs
                      return (foldr concVarTypesMap [] iotss)
  Typed e _     -> verifyVarExpr ve e -- TODO: use type info
 where
  -- adds Any type for a variable if it is unknown
  addAnyTypeIfUnknown v = do
    vts <- getVarTypeOf v
    when (null vts) (addVarAnyType v)

  -- Return an input/output type for a constructor and its arguments
  returnConsIOType qc vs rv = do
    vts <- getVarTypes
    let vstypes = map (flip getVarType vts) vs
    --let anys = anyTypes (length vs)  -- TODO: use vs types from VarTypes!!!!
    --return [(rv, IOT [(anys, aCons qc anys)], vs)]
    return [(rv, [(IOT [(vstypes, aCons qc vstypes)], vs)])]

-- Verify the abstract type or non-fail condition of a function call.
-- The second argument is the function call as a FlatCurry expression,
-- the third argument is the function name, and the fourth argument
-- are the argument variables.
verifyFuncCall :: TermDomain a => Expr -> QName -> [Int] -> VerifyStateM a ()
verifyFuncCall exp qf vs = do
  opts <- fmap vstToolOpts get
  if qf == pre "failed" || (optError opts && qf == pre "error")
    then do
      bcond  <- getExpandedCondition
      unsat  <- incrNonTrivialCall >> incrUnsatSMT >> isUnsatisfiable bcond
      if unsat
        then do currfn <- getCurrentFuncName
                printIfVerb 3 $ "FUNCTION " ++ snd currfn ++ ": CALL TO " ++
                  snd qf ++ showArgumentVars vs ++ " NOT REACHABLE\n"
        else addFailedFunc exp Nothing fcTrue
    else do atype <- getCallType qf (length vs)
            if isTotalACallType atype 
              then return ()
              else do mbnfcond <- getNonFailConditionOf qf
                      verifyNonTrivFuncCall exp qf vs atype mbnfcond

-- Verify the non-trivial abstract type or non-fail condition
--  of a function call.
-- The first argument is the expression of the call (used to show
-- the possible failed expression), the second and third arguments
-- are the name and the arguments of the current function call.
-- The last argument is the possible non-fail condition for this function.
verifyNonTrivFuncCall :: TermDomain a => Expr -> QName -> [Int]
                      -> ACallType a -> Maybe NonFailCond -> VerifyStateM a ()
verifyNonTrivFuncCall exp qf vs atype mbnfcond = do
  incrNonTrivialCall
  currfn <- getCurrentFuncName
  printIfVerb 3 $ "FUNCTION " ++ snd currfn ++ ": VERIFY CALL TO " ++
                  snd qf ++ showArgumentVars vs ++
                  "\n  w.r.t. call type: " ++ prettyFunCallAType atype
  callcond <- maybe
    (return fcFalse)
    (\(nfcvars,nfcond) -> do
      -- compute the precondition for this call by renaming the arguments:
      let freenfcargs = filter ((`notElem` [1..length vs]) . fst) nfcvars
      newfvars <- mapM (\_ -> newFreshVarIndex) freenfcargs
      -- add renamed free variables of condition to the current set of variables
      addVarExps (map (\(v,(_,t)) -> (v,t,Var v)) (zip newfvars freenfcargs))
      -- rename variable in condition:
      let rnmcvars = zip [1.. length vs] vs ++
                     map (\(nv,(v,_)) -> (v, nv)) (zip newfvars freenfcargs)
      st <- get
      let callcond0 = expandExpr (vstVarExp st) (renameAllVars rnmcvars nfcond)
      printIfVerb 3 $ "  and call condition: " ++ showSimpExp callcond0
      return callcond0)
    mbnfcond
  showVarExpTypes
  --allvts <- getVarTypes
  --printIfVerb 3 $ "Current variable types:\n" ++ showVarTypes allvts
  svts <- fmap simplifyVarTypes getVarTypes
  printIfVerb 4 $ "Simplified variable types:\n" ++ showVarTypes svts
  let vts = map (\v -> (v, getVarType v svts)) vs
  printIfVerb 3 $ "Variable types in this call: " ++ printVATypes vts
  if subtypeOfRequiredCallType (map snd vts) atype
    then printIfVerb 3 "CALL TYPE SATISFIED\n"
    else -- Check whether types of call argument variables can be made
         -- more specific to satisfy the call type. If all these variables
         -- are parameters of the current functions, specialize the
         -- call type of this function and analyze it again.
         do printIfVerb 3 "UNSATISFIED ABSTRACT CALL TYPE\n"
            maybe
              (if callcond == fcFalse
                 then addFailedFunc exp Nothing callcond
                 else do
                  -- check whether the negated call condition is unsatisfiable
                  -- (if yes: call condition holds)
                  implcond <- getExpandedConditionWithConj (fcNot callcond)
                  implied  <- incrUnsatSMT >> isUnsatisfiable implcond
                  if implied
                    then printIfVerb 3 "CALL CONDITION SATISFIED\n"
                    else addFailedFunc exp Nothing callcond)
              (\newvts -> do
                 printIfVerb 3 $ "COULD BE SATISFIED BY ENSURING:\n" ++
                                 printVATypes newvts
                 addFailedFunc exp (Just newvts) fcTrue
              )
              (specializeToRequiredType vts atype)
 where
  printVATypes = intercalate ", " . map (\ (v,t) -> show v ++ '/' : showType t)

-- Auxiliary operation to support specific handling of applying predefined
-- operations with specific non-fail conditions.
-- If the current expression (first argument) is not a specific
-- predefined operation, the computation will be continued by calling
-- the second argument (a continuation).
-- For instance, division operations require that the second argument is
-- non-zero. If this argument is a constant, it will be immediately checked,
-- otherwise a non-fail condition will be generated and checked.
-- Since such primitive operations can be invoked by FlatCurry expressions
-- with various structures (due to the numeric type classes),
-- these structures will be checked.
checkPredefinedOp :: TermDomain a => Expr -> VerifyStateM a (VarTypesMap a)
                  -> VerifyStateM a (VarTypesMap a)
checkPredefinedOp exp cont = case exp of
  -- check integer division:
  Comb FuncCall ap1 [Comb FuncCall ap2 [Comb FuncCall qf _, arg1], arg2]
    | ap1 == apply && ap2 == apply && qf `elem` intDivOps
    -> tryCheckNumValue (intValue arg2) qf arg1 arg2 fcInt
  -- check float division:
  Comb FuncCall qf [arg1, arg2]
    | qf == pre "_impl#/#Prelude.Fractional#Prelude.Float#"
    -> tryCheckNumValue (floatValue arg2) qf arg1 arg2 fcFloat
  Comb FuncCall ap1 [Comb FuncCall ap2 [Comb FuncCall qf _, arg1], arg2]
    | ap1 == apply && ap2 == apply && qf `elem` floatDivOps
    -> tryCheckNumValue (floatValue arg2) qf arg1 arg2 fcFloat
  -- check sqrt call:
  Comb FuncCall ap1 [Comb FuncCall qf [], arg]
    | ap1 == apply && qf == pre "_impl#sqrt#Prelude.Floating#Prelude.Float#"
    -> maybe (verifyPredefinedOp qf [arg] fcFloat)
             (\x -> do unless (x >= 0) $ addFailedFunc exp Nothing fcFalse
                       return [])
             (floatValue arg)
  _ -> cont
 where
  tryCheckNumValue mbx qf arg1 arg2 te =
    maybe (verifyPredefinedOp qf [arg1,arg2] te)
          (\z -> do if z == 0 then addFailedFunc exp Nothing fcFalse
                              else printIfVerb 4 nonZeroOkMsg
                    verifyExpr True arg1
                    return [])
          mbx

  verifyPredefinedOp qf args te =
     maybe (do printIfVerb 0 $
                 "WARNING: non-fail condition of " ++ snd qf ++ " not found!"
               cont)
           (\nfc -> do vs <- mapM (verifyExpr True) args
                       mapM_ (\v -> setVarExpTypeOf v te) vs
                       verifyNonTrivFuncCall exp qf vs failACallType (Just nfc)
                       return [])
           (lookupPredefinedNonFailCond qf)

  intValue e = case e of
    Lit (Intc i) -> Just i
    Comb FuncCall ap [ Comb FuncCall fromint _ , nexp] 
      | ap == apply && fromint == pre "fromInt" -> intValue nexp
    _            -> Nothing

  floatValue e = case e of
    Lit (Floatc f) -> Just f
    Comb FuncCall ap [ Comb FuncCall fromfloat _ , nexp] 
      | ap == apply && fromfloat == pre "fromFloat" -> floatValue nexp
    Comb FuncCall ap [(Comb FuncCall fromint _), nexp]
       | ap == apply && fromint == pre "fromInt" -> fmap fromInt (intValue nexp)
    Comb FuncCall negFloat [fexp]
      | negFloat == pre "_impl#negate#Prelude.Num#Prelude.Float#"
                   -> fmap negate (floatValue fexp)
    _              -> Nothing

  apply = pre "apply"

  nonZeroOkMsg = "Divion with non-zero constant is non-failing"

-- Verify whether missing branches exists and are not reachable.
verifyMissingBranches :: TermDomain a => Expr -> Int -> [BranchExpr] -> VerifyStateM a ()
verifyMissingBranches _ _ [] = do
  currfn <- getCurrentFuncName
  error $ "Function " ++ snd currfn ++ " contains case with empty branches!"
verifyMissingBranches exp casevar (Branch (LPattern lit) _ : bs) = do
  incrIncompleteCases
  currfn <- getCurrentFuncName
  let lits = lit : map (patLiteral . branchPattern) bs
  cvtype <- getVarTypes >>= return . getVarType casevar
  unless (isSubtypeOf cvtype (foldr1 lubType (map aLit lits))) $ do
    printIfVerb 3 $ showIncompleteBranch currfn exp [] ++ "\n"
    showVarExpTypes
    addMissingCase exp []
verifyMissingBranches exp casevar (Branch (Pattern qc _) _ : bs) = do
  consinfos <- getConsInfos
  let otherqs  = map ((\p -> (patCons p, length(patArgs p))) . branchPattern) bs
      siblings = siblingsOfCons consinfos qc
      missingcs = siblings \\ otherqs -- constructors having no branches
  currfn <- getCurrentFuncName
  unless (null missingcs) $ do
    printIfVerb 0 $ -- just for checking in order to refactor in the future...
      "MISSING CONSTRUCTORS " ++ show missingcs ++ " IN FUNCTION " ++ snd currfn
    incrIncompleteCases
    cvtype <- getVarTypes >>= return . getVarType casevar
    let posscs = map fst
                     (filter (\(c,ar) -> let ctype = aCons c (anyTypes ar)
                                         in joinType cvtype ctype /= emptyType)
                             missingcs)
    cond <- getExpandedCondition
    unless (null posscs) $
      if cond == fcTrue
        then do
          printIfVerb 3 $ showIncompleteBranch currfn exp posscs ++ "\n"
          showVarExpTypes
          addMissingCase exp posscs
        else do
          showVarExpTypes
          unsatcons <- fmap concat $ mapM checkMissCons posscs
          unless (null unsatcons) $ do
            printIfVerb 3 $
              "UNCOVERED CONSTRUCTORS: " ++ unwords (map snd unsatcons)
            setNewFunCondition currfn nfcFalse
            addMissingCase exp unsatcons
 where
  -- check whether a constructor is excluded by the current call condition:
  checkMissCons cs = do
    printIfVerb 4 $ "CHECKING UNREACHABILITY OF CONSTRUCTOR " ++ snd cs
    consinfos <- getConsInfos
    let iscons = transTester consinfos cs (Var casevar)
    bcond <- getExpandedCondition
    unsat <- isUnsatisfiable (fcAnd iscons bcond)
    return $ if unsat then [] else [cs]

-- Gets the state information which might be changed during branch verification.
getBranchState :: TermDomain a => VerifyStateM a ([(Int,TypeExpr,Expr)], VarTypesMap a, Expr -> Expr)
getBranchState = do
  ves  <- getVarExps
  vts  <- getVarTypes
  cond <- getCondition
  return (ves,vts,cond)

-- Gets the state information which might be changed during branch verification.
restoreBranchState :: TermDomain a =>
  ([(Int,TypeExpr,Expr)], VarTypesMap a, Expr -> Expr) -> VerifyStateM a ()
restoreBranchState (ves,vts,cond) = do
  setVarExps ves
  setVarTypes vts
  setCondition cond

-- Verify a branch where the first argument is the case argument variable
-- and the second argument is the variable identifying the case expression.
verifyBranch :: TermDomain a => Int -> Int -> BranchExpr
             -> VerifyStateM a (VarTypesMap a)
verifyBranch casevar ve (Branch (LPattern l) e) = do
  bstate <- getBranchState
  vts  <- getVarTypes
  let branchvartypes = bindVarInIOTypes casevar (aLit l) vts
  printIfVerb 4 $ "BRANCH WITH LITERAL '" ++ show l ++ "'"
  addEquVarCondition casevar (Lit l)
  if isEmptyType (getVarType casevar branchvartypes)
    then return [] -- unreachable branch
    else do setVarTypes branchvartypes
            iots <- verifyVarExpr ve e
            restoreBranchState bstate
            return iots
verifyBranch casevar ve (Branch (Pattern qc vs) e) = do
  bstate <- getBranchState
  ves  <- getVarExps
  consinfos <- getConsInfos
  let vet = maybe unknownType snd3 (find ((== casevar) . fst3) ves)
  addVarExps (map (\ (v,vt) -> (v, vt, Var v))
                  (zip vs (if vet == unknownType
                             then repeat unknownType
                             else patArgTypes consinfos vet)))
  vts  <- getVarTypes
  let pattype        = aCons qc (anyTypes (length vs))
      branchvartypes = simplifyVarTypes (bindVarInIOTypes casevar pattype vts)
      casevartype    = getVarType casevar branchvartypes
  -- add single case for case variable and pattern to the current condition:
  if null vs then addEquVarCondition casevar (Comb ConsCall qc [])
             else addSingleCase casevar qc vs
  printIfVerb 4 $ "BRANCH WITH CONSTRUCTOR '" ++ snd qc ++ "'"
  showVarExpTypes
  if isEmptyType casevartype
    then do restoreBranchState bstate
            return [] -- unreachable branch
    else do setVarTypes branchvartypes
            mapM_ (\(v,t) -> addVarType v (ioVarType t))
                  (zip vs (argTypesOfCons qc (length vs) casevartype))
            iots <- verifyVarExpr ve e
            restoreBranchState bstate
            return iots
 where
  -- compute the argument types from the result type `pt` of the branch variable
  -- where some regularly occurring constructors are directly implemented
  patArgTypes consinfos pt
    | qc == pre ":"
    = case pt of TCons tc [et] | tc == pre "[]" -> [et, pt]
                 _                              -> noPatTypeErr
    | qc == pre "(,)"
    = case pt of TCons tc [t1,t2] | tc == pre "(,)" -> [t1,t2]
                 _                                  -> noPatTypeErr
    | qc == pre "Just"
    = case pt of TCons tc [t] | tc == pre "Maybe" -> [t]
                 _                                -> noPatTypeErr
    | otherwise
    = maybe (error $ "Info about constructor '" ++ snd qc ++ "' not found!")
            (\(_,ConsType tes tc tvs,_) ->
              case pt of
                TCons dtc ats | tc == dtc -> map (applyTSubst (zip tvs ats)) tes
                _                         -> noPatTypeErr
            )
            (lookup qc consinfos)

  noPatTypeErr = error $
    "verifyBranch: cannot compute pattern argument types for " ++ snd qc

-- Gets the abstract type of a variable w.r.t. a set of variable types.
getVarType :: TermDomain a => Int -> VarTypesMap a -> a
getVarType v vtsmap =
  maybe (error $ "Type of variable " ++ show v ++ " not found!")
        (\vts -> let rts = concatMap (\ (IOT iots, _) -> map snd iots) vts 
                 in if null rts then emptyType
                                else foldr1 lubType rts)
        (lookup v vtsmap)

------------------------------------------------------------------------------
--- Computes for a given set of function declarations in a module
--- a mapping from module function names to the list of function
--- declarations where these names are used in the right-hand side.
funcDecls2Usage :: String -> [FuncDecl] -> Map.Map QName [FuncDecl]
funcDecls2Usage mname fdecls = addFDecls (Map.empty) fdecls
 where
  addFDecls m []       = m
  addFDecls m (fd:fds) =
    let rhsfuns = filter (\f -> fst f == mname) (usedFuncsInFunc fd)
    in Map.insertListWith unionFDecls (map (\qf -> (qf,[fd])) rhsfuns)
                          (addFDecls m fds)

unionFDecls :: [FuncDecl] -> [FuncDecl] -> [FuncDecl]
unionFDecls = unionBy (\fd1 fd2 -> funcName fd1 == funcName fd2)

--- Get function names used in the right-hand side of a function declaration.
usedFuncsInFunc :: FuncDecl -> [QName]
usedFuncsInFunc = usedFuncsInRule . funcRule

--- Get function names used in the right-hand side of a rule.
usedFuncsInRule :: Rule -> [QName]
usedFuncsInRule = trRule (\_ body -> funcsInExpr body) (\_ -> [])

------------------------------------------------------------------------------
--- A list of any types of a given length.
anyTypes :: TermDomain a => Int -> [a]
anyTypes n = take n (repeat anyType)

------------------------------------------------------------------------------
-- Utilities

-- I/O action to force evaluation of the argument to normal form.
enforceNormalForm :: Options -> String -> a -> IO ()
enforceNormalForm opts s x
  | optEnforceNF opts
  = do whenStatus opts $
         printInfoString $ "EVALUATE " ++ s ++ " TO NORMAL FORM..."
       (id $!! x) `seq` return ()
       printWhenStatus opts "DONE"
  | otherwise
  = return ()

------------------------------------------------------------------------------
-- Shows the simplified expression.
showSimpExp :: Expr -> String
showSimpExp = showExp . simpExpr

--- Checks the unsatisfiability of a Boolean expression w.r.t. a set
--- of variables (second argument) with an SMT solver.
isUnsatisfiable :: TermDomain a => Expr -> VerifyStateM a Bool
isUnsatisfiable bexp = do
  st <- get
  if optSMT (vstToolOpts st)
    then do
      fname  <- getCurrentFuncName
      vts <- fmap (map (\(v,te,_) -> (v,te))) getVarExps
      let allvs    = allFreeVars bexp
      let vtypes   = filter ((`elem` allvs) . fst) vts
          question = "Verifying function " ++ snd fname ++ ":\n\n" ++
                     "IS\n  " ++ showSimpExp bexp ++ "\nUNSATISFIABLE?"
      unless (all (`elem` map fst vtypes) allvs) $ lift $ printInfoLine $
        "WARNING in operation '" ++ snd fname ++
        "': missing variables in unsatisfiability check!"
      consinfos <- getConsInfos
      answer <- lift $ checkUnsatisfiabilityWithSMT (vstToolOpts st)
                         fname question (vstModules st) consinfos vtypes bexp
      maybe (setToolError >> return False) return answer
    else return False

------------------------------------------------------------------------------
types:
VerifyState VerifyStateM
unsafe:
unsafe due to modules Debug.Trace System.IO.Unsafe CASS.Registry Analysis.NondetOps Analysis.UnsafeModule